SCIENCE

Science: Torah Perspectives

Prepared by Ner Le'Elef

SCIENCE

Science: Torah Perspectives

Prepared by Ner Le'Elef

Publication date 10 June 2004

Permission is granted to reproduce in part or in whole.

Profits may not be gained from any such reproductions.

This book is updated with each edition and is produced several times a year.

Other Ner Le'Elef Booklets currently available:

AMERICAN SOCIETY
BOOK OF QUOTATIONS
THE CHOSEN PEOPLE
EVOLUTION
HOLOCAUST
LEADERSHIP AND MANAGEMENT
ORAL LAW
PROOFS
QUESTION & ANSWERS
SUFFERING
THIS WORLD & THE NEXT
WOMEN'S ISSUES (Book One)
WOMEN'S ISSUES (Book Two)

For information on how to order additional booklets, please contact:

Ner Le'Elef

P.O. Box 14503 Jewish Quarter, Old City, Jerusalem 91145 E-mail: nerlelef@barak-online.net

Fax #: 972-02-652-6339 Tel #: 972-02-651-0825

SCIENCE: תורה PERSPECTIVES

Table Of Contents

	Page
SUGGESTED OUTLINE FOR SCIENCE AND BELIEF	8
SUGGESTED OUTLINE FOR SCIENCE AND JUDAISM	9
CONFLICT OR COMPATIBILITY?	9
OVERVIEW	10
CHAPTER A: DISCOVERING השם THROUGH THE PHYSICAL WORLD	13
i-Obligated to see השגחה s'השם in the physical world	14
	17
ii-Physical world is world of הכרח, therefore the השגחה seen through the order	1 /
iii-Therefore, study of the physical world can be the starting point for discovering the Truth	18
	18
iv-The reason we use תורה and not the physical world is because the latter is too unreliable	20
a method	20
CHAPTER B: SCIENCE MUST BE SUBSERVIENT TO תורה	22
i-Judaism pro technical progress	23
a-Judaism never felt itself in conflict with science.	23
b-הלכה relates to contemporary science as being normative	24
ii-Through the תורה we reach the physical world	25
a-Science, the surface reason, spirituality, the underlying reason	26
CHAPTER C: CONFLICTS & COMPATIBILITY	27
The Nature of a Scientific Theory	28
i- Current Compatibility	30
a - Big Bang	30
b - Matter is Energy/Fields	31
c - Probability d - Observer Centered Universe	32 33
e - Punctuated Theory of Evolution	33
f - Microbiology	34
g - Archaeology	34
h – Supersymmetry	34
i - Theory of Relativity	35
j - Recognition of Limitations	36
k - Anthropic Principle	36
1 - Religious scientists	38
ii-Living the contradiction	39
iii - Science itself Accommodates Contradictions	39
a - Contradictory Theories	39
b -Competing theories 1 - Dead Sea Scrolls	40 40
2 - Dark Matter	40
3 – Consciousness	40
4 - The Ultimate Force	40
5 – Superconductivity	40

6 - Birds from Dinosaurs	40
7 - The Standard Model c-Science is in constant progress	40 41
iv-The danger of trying to explain the חומש according to contemporary physics	45
CHAPTER D: LIMITATIONS OF SCIENCE	47
i - Science's Enormous Achievements	48
ii - The Arrogance of Science	49
iii - The physical world meaningless without the spiritual world	51
iv - Technical advances lead to new moral issues	52
a – Cloning	52
b - Triage	52
v-Scientists unqualified to assess these issues	52
vi -Could not produce a system of ethical living	53
a - No ethics b - Inadequate world view	53 53
c - No control of society	54
d - Made things worse	54
e - No feelings, purpose or values	54
vii-Cannot, even in principle, gain a total grasp of knowledge	54
a - Indeterminacy and Probability b - Chaos and Complexity	55 55
viii-Practical Limits	56
a - Conflict between Quantum Theory and Theory Of Relativity	56
b - Dark Matter	56
c - Migration of Birds d - Annual Diet	56 56
e - Superconductivity	57
f - Shape of the Milky Way	57
g - How many basic elements can exist	57
h - How does the earth move internally?	57
ix-Logical Limits	59
x-At certain point the physical world inaccessible	59
xi-Therefore requires the Torah to illuminate	60
xii-Messianic Era	60
CHAPTER E: THE METHODOLOGY OF MODERN PHYSICS: THEORY VS.	(1
PRACTICE	61
i-Observation and recording of all facts	62
ii-Analysis and Classification	64
iii-Forming Theories and Laws	64
iv-Prediction and Verification	66
v- Peer Review and Replication	69
vi-Replacement of previous theory	70
vii-Scientific Misconduct	70
CHAPTER F: UNDERLYING BELIEFS OF SCIENCE	74
i-Unity	75

ii-Beauty	76
iii-Simplicity	78
iv-Paradigms	79
APPENDIX A: THE BIG BANG	81
i-The State of Cosmology Today	82
ii-Description	82
iii-Proofs for the Big Bang theory	84
a-Red Shift - Doppler Effect	84
b-Radio waves showed changes in universe	85
c-Cosmic Background Radiation	85
d-COBE	86 87
e-Entropy f-Composition of the Universe	88
iv-Reactions to the Discovery of the Big Bang	88
v-Inflationary Theory	89
vi-What Happened before the Big Bang?	90
vii-What Happened After the Big Bang?	92
viii-A Narrative Description of the Discovery of the Big Bang	96
ix – Is the Universe still expanding and how will it end?	100
APPENDIX B: THE FOUR FORCES AND THE ATTEMPT TO UNIFY THEM	107
i-Gravity	109
ii-The Electromagnetic Force	110
iii-The Strong Force	111
iv-The Weak Force	111
v-One force from four	111
vi-A Fifth Force	117
APPENDIX C: QUANTUM THEORY	121
APPENDIX D: SUBATOMIC PARTICLES	129
i-The Standard Model, the four forces and their particles	130
ii-Neutrinos	132
iii-Anti-Matter	135
iv-Missing Matter and Paired Particles	135
v –Other Expected Particles	137
APPENDIX E: UNCERTAINTY & PROBABILITY	138
i- New concepts of Matter	139
ii-Uncertainty	139
a - Practical Uncertainty	139
b - Uncertainty because Man a Part of the System	140
c - Quantum Uncertainty	140
APPENDIX F: RELATIVITY	142
i-Space-Time	143
ii-Black Holes	145

APPENDIX G: RELIGION AND SCIENTISTS	147
i-Religious Beliefs of Scientists	148
a - Isaac Newton	148
b - Herman Weyl	148
c - Max Born	148
d - Arthur Eddington	148
e - Max Planck	149
f - Robert Jastrow	149
g - Charles Townes	149 149
h - Carl Sagan i - Steven Weinberg	149
j - Stephen Hawking	149
ii-Orthodox Scientists - Historical	149
a-Rambam	150
b-Vilna Gaon	150
	150
iii-Orthodox Scientists - Contemporary a-Avraham Steinberg	150
b-Elie Schusheim	150
c-Leo Levi	150
d-Abraham HaSofer	150
e-Cyril Domb	150
f-William Etkin	151
g-Alvin Radkowsky	151
h-Aaron Vecht	151
i-Rabbi Moshe Tendler	151
j-Herman Branover	151 151
k-Rabbi Dr. Naftali (Norman) Berg l-Dr. Aryeh Gotfryd	151
m-Dr. Alexander Poltorak	151
n-Professor Velvel Greene	152
o-Professor Yakov Brawer	152
p-Professor Barry Simon	152
q-Arnold Penzias	152
r-Gerald Schroeder	152
APPENDIX H: THE PHILOSOPHY OF NATURAL SCIENCE	153
i-Popper	154
ii-Kuhn	154
iii-Feyerabend	154
APPENDIX I: MISCELLANEOUS PRINCIPLES OF SCIENCE	156
i - How Quantum Forces Translate into Classical Laws	157
ii - The Contradiction of Quantum Laws and General Relativity: Black Holes	157
iii - Symmetry – Exceptions	157
iv-Complexity/Chaos Theory	157
v-Genetics	158
APPENDIX J: יערות דבש: ON USING MATHS, MUSIC AND OTHER WORLDLY	
KNOWLEDGE	160
APPENDIX K: NOTABLE QUOTES AND READINGS	163
i-Notable quotes	164

168
164
164
164

SUGGESTED OUTLINE FOR SCIENCE AND BELIEF

- 1-No knowledge can be known as a certain fact.
- 2-Even the paradigm of perfect science, physics, works in this way. Chapter D vii and ix
- 3-Some scientific theories are accepted because:
 - (i) They are more aesthetic Copernicus. Chapter F ii
- (ii) We don't have any better ones at the time e.g. theory of superconductivity. **Chapter D viii e**
- (iii) Despite the fact that they contradict other theories e.g. relativity and quantum physics.

Chapter D viii a

- (iv) They are easier to use e.g. Newtonian physics. Chapter F iii
- 4-Therefore all knowledge requires an act of faith. It is not a choice between believers and non-believers but between different sets of beliefs. We must therefore develop rigorous criteria for examining such beliefs. But we can never get rid of belief altogether. This is because our knowledge can never be perfect. Why? **Chapter D vii xii**
- 5-Other examples of belief: Democracy, capitalism. Systems we choose to live by, not underlying principles of existence.
- 6-Beliefs should be rational leaps of faith otherwise you can believe anything. As good scientists we must examine which belief best fits the facts. **Chapter A i iii**
- 7-They should always begin with an empirical base. For Judaism, that base was the Exodus and Sinai.
- 8-We should not expect of Judaism more than we expect of science: there will always be different possible explanations for things. Judaism should be the most rational of all the alternatives. **Chapter C iii** and **E vi**
- 9-They should make predictions.

Prophecies. Chapter E iv

10-They should work. Chapter D i

Living Judaism throughout time, place, different cultures, wealth, poverty, etc.)

SUGGESTED OUTLINE FOR SCIENCE AND JUDAISM: CONFLICT OR COMPATIBILITY?

- 1 Science's status in the world because it has worked. Chapter D i
- 2 Judaism is pro-science. Chapter A i-iii; B i. Appendix J; Appendix G ii and iii
- 3 Over time, science has gotten closer and closer to Judaism. Chapter C i; Appendix G i.
- 4 There still may be contradictions; but this is no different to competing theories within science itself. Chapter C iii a and b
- 5 Since science is moving toward Judaism and since science is still in progress (**Chapter C** iii c) therefore we can wait for future developments in science to resolve outstanding issues.
- 6 Judaism has a great deal to offer science;
 - a It can give science purpose Chapter D iii
 - b It can give science moral direction Chapter D iv vi
 - c It can give the world access to dimensions beyond science. Chapter A ii, D x xi
- 7 This is especially true when it comes to moral spiritual issues.

OVERVIEW

OVERVIEW

Torah and science have been contrasted in several ways:

The simplest way is to say that science and Judaism are talking about two different things, that science deals only with the physical word, whereas Torah deals with the spiritual and moral plane. However, I do not believe this approach to be correct. Although it is true that the Torah is not a book of science, (and science cannot tell us how we ought to act as moral and spiritual beings) there is definitely information in the Torah which tells us about the physical world. We know, for example, that the world had a definite beginning, that there were six days of creation, etc. Even if we understand these events in a certain way, we still have to relate to them. There is no question that before the discovery of the Big Bang by science, the scientific theory of the universe (that it had always been around) was in conflict with the Torah (and therefore wrong). For the same reason, there are definitely things about the theory of evolution which contradicts the Torah position. More than that, Chazal are quite explicit about the fact that the physical world is an exact parallel of the spiritual worlds above it. The entire נפש החיים of Ray Chaim of Volozhin is based on this point.

So Torah and science do relate and can be in conflict. Yet, the amazing things is that while there are definite areas of incompatibility between modern science and Judaism, science has moved very rapidly in the direction of Judaism over the last century. To the best of my knowledge, there is not a single area of science which is currently moving away from Judaism. In other words, what little incompatibility is left, is getting smaller and smaller. This is quite remarkable. A hundred years ago or more, a Jew would have been faced with

huge contradictions between Judaism and science. His belief in Torah would have gone against thousands of years of scientific progress. Today, Arachim-like seminars use archaeology, physics, astronomy and other areas of science as outside proofs for the authenticity of the Torah!

But there is something even more remarkable. The progress of science is based on certain beliefs about the world. I call them beliefs because they are not scientifically provable. Yet they are the underlying bread and butter which provides the direction which propels the fundamental direction in which science is going. For example, scientists have been searching for a theory which will combine all of the basic four forces of matter (the weak, electromagnetic strong, gravitation forces) into one force. Now there is nothing in science which says that there has to be one force instead of four. This is a belief which lies out of the realm of science, but which all scientists not only believe, but are investing massive amounts of time, money and effort. Although few scientists have stopped to think about the matter, such a belief would only make sense in a Monotheistic world. If there is one G-d Who is the source of everything, then all things ought to be traceable back to a point where they are all one. But if there was no One Creator of everything, what's wrong with four sources.

The reason that science is getting so close to a Torah viewpoint in our age is because we are in the pre-Messianic era. This is the time when the most powerful Galus ever to exist on earth, Edom, was destined to present the closest, most powerful alternative to Torah, and science is at the center of this.

The problem with science (indeed the problem with Edom) has been that science

takes us ever so close to tying up the creation back to the Creator. But just at that point it stops and claims that that is all there is to it. Science separates itself from religion at the very point where it ought to be calling on an understanding of G-d to complete the explanation which it had begun. Science discovers the Big Bang,

but will then try desperately to avoid saying that that means that G-d created the world. Scientists uncover the anthropic principle, that nature seems to have direction and purpose towards life, but will not say that some Being therefore designed it that way.

CHAPTER A: DISCOVERING השם THROUGH THE PHYSICAL WORLD

- i-Obligated to see השב in the physical world
- ii-Physical world is world of הכרח, therefore the השגחה seen through the order
- iii-Therefore, study of the physical world can be the starting point for discovering the truth
- iv-The reason we use תורה and not the physical world is because the latter is too unreliable a method

CHAPTER A: DISCOVERING השם THROUGH THE PHYSICAL WORLD

i-Obligated to see השם in the physical world

But, according to th The name שקי means אני הוא שאמרתי לעולמי די¹. According to the Ohr Gedalyahu, this means that G-d hid himself in the world of nature, but put a limit on this so that it will always be possible to recognize G-d through the created world. A close and honest look at the world raises the question – who is behind all of this. Hence the Zohar states that the world with which the world was created – אלוקים – comes from the words מי who are these' or 'who is behind this '?' This was the Avodah of the Avos, and in particular Avraham Avinu, to discover G-d through the world of nature.

The world that Avraham was born into had become completely idolatrous. The Rishonim explain how G-d uses intermediaries, Malachim, stars and other, to influence the world. People began to tap into those intermediaries, hoping to bring down more benefit into the world. Eventually, they began to detach these intermediaries from their source and the pray directly to them⁵. One thin line of Monotheism remained: Chanoch, Noach, Shem through to

⁵רמב"ם הלכות עבודת כוכבים 9' א: (א) בימי אנוש טעו בני האדם טעות גדול ונבערה עצת חכמי אותו הדור ואנוש עצמו מן הטועים היה וזו היתה טעותם אמרו הואיל והאלהים ברא כוכבים אלו וגלגלים להנהיג את העולם ונתנם במרום וחלק להם כבוד והם שמשים המשמשים לפניו ראויין הם לשבחם ולפארם ולחלוק להם כבוד וזהו רצון האל ברוך הוא לגדל ולכבד מי שגדלו וכבדו כמו שהמלך רוצה לכבד העומדים לפניו וזהו כבודו של מלך כיון שעלה דבר זה על לבם התחילו לבנות לכוכבים היכלות ולהקריב להן קרבנות ולשבחם ולפארם בדברים ולהשתחוות למולם כדי להשיג רצון הבורא בדעתם הרעה וזה היה עיקר עבודת כוכבים וכך היו אומרים עובדיה היודעים עיקרה לא שהן אומרים שאין שם אלוה אלא כוכב זה הוא שירמיהו אומר מי לא ייראך מלך הגוים כי לך יאתה כי בכל חכמי הגוים ובכל מלכותם מאין כמוך ובאחת יבערו ויכסלו מוסר הבלים עץ הוא כלומר הכל יודעים שאתה הוא לבדך אבל טעותם וכסילותם שמדמים שזה ההבל רצונך הוא:

רמב"ם הלכות עבודת כוכבים פ' א: (ב) ואחר שארכו הימים עמדו בבני האדם נביאי שקר ואמרו שהאל צוה ואמר להם עבדו כוכב פלוני או כל הכוכבים והקריבו לו ונסכו לו כך וכך ובנו לו היכל ועשו צורתו כדי להשתחוות לו כל העם הנשים והקטנים ושאר עמי הארץ ומודיע להם צורה שבדה מלבו ואומר זו היא צורת הכוכב פלוני שהודיעוהו בנבואתו והתחילו על דרך זו לעשות צורות בהיכלות ותחת האילנות ובראשי ההרים ועל הגבעות ומתקבצין ומשתחוים להם ואומרים לכל העם שזו הצורה מטיבה ומריעה וראוי לעובדה וליראה ממנה וכהניהם אומרים להם שבעבודה זו תרבו ותצליחו ועשו כך כך ואל תעשו כך וכך והתחילו כוזבים אחרים לעמוד ולומר שהכוכב עצמו או הגלגל או המלאך דבר עמהם ואמר להם עבדוני בכך וכך והודיע להם דרך עבודתו ועשו כך ואל תעשו כך ופשט דבר זה בכל העולם לעבוד את הצורות בעבודות משונות זו מזו ולהקריב להם ולהשתחוות וכיון שארכו הימים נשתכח השם הנכבד והנורא מפי כל היקום ומדעתם ולא הכירוהו ונמצאו כל

חגיגה יב. ואמר רב יהודה אמר רב בשעה שברא הקדוש ברוך הוא את העולם היה מרחיב והולך כשתי פקעיות של ¹ שתי עד שגער בו הקדוש ברוך הוא והעמידו שנאמר עמודי שמים ירופפו ויתמהו מגערתו והיינו דאמר ריש לקיש מאי דכתיב אני אל שדי אני הוא שאמרתי לעולם די אמר ריש לקיש בשעה שברא הקדוש ברוך הוא את הים היה מרחיב והולך עד שגער בו הקדוש ברוך הוא ויבשו שנאמר גוער בים ויבשהו וכל הנהרות החריב

אור גדליהו, וארא אמוד 27-28: כי בעת שברא הקב״ה תא העולם ... היה באופן שבתוך הבריאה יש הסתר ואינו ניכר ² שהקב״ה מהוה את הבריאה בכל עת, אבל גם העלם והסתר הוא במידה מסוימת, כי הגביל את כוחות הטבע בגבול ובמדה מסוימת,

אור גדליהו שם: שלא יהיה ההסתר עד כדי כך שלא יהיה ביכולת להכיר מתוך הבריאה שהקב״ה הוא המהוה את ³ הבריאה, רק יהיה במדה כזו שהאדם יהיה ביכולתן להכיק בה שהקב״ה ברא את עולמו.

אור גדליהו שם: וכמו שאמרו בזוה"ק שהעולם נברא בשם אלוקים שהוא אותיות מי ואלה על שם הכתוב שאו מרום ⁴ עיניכם וראו מי ברא אלה. שהעולם נברא באופן כשה שהוא מעורר בשאלהת שעומד לשאול מי ברא, וישכול לבא מתוך זה לההכרה שך אלקות בתוך הבריאה, והיינו שאמרו די אלקותו לכל בריאה, היינו שהאלוקות בתוך הבריאה הוא האופו כזה שיכול כל בריאה להכיר מהבריאה שהקב"ה ברא את העולם.

Ever, but these people lived and died with their secret¹. All this changed with Avraham Avinu, who was brought up as an idolater like all those around him².

Avraham Avinu discovered G-d by looking at nature³. Described by the Alter of Slobodka as the first and perhaps the greatest of the philosophers⁴, Avraham did not take anything for granted. Avraham began his G-d search at the age of 3⁵ but he was 40 - another 37 years of total absorption and thought, all the while still serving idols⁶ - until he reached a mature understanding and relationship with G-d⁷. (Our Parsha begins 35 years later, when Avraham was 75 years old.)

In the end, he was to reconstruct for himself the whole of creation, including the higher spiritual realms. His legacy to us is the Sefer Hayetzirah, which explains how the letters of the Hebrew alphabet were used by G-d to create the world⁸. Avraham Avinu was able to trace any object back up its spiritual trajectory9 understanding, as Adam HaRishon once did, how the word, actually sustains the physical reality it produced¹⁰. Man, who is an עולם קטן is made up of all 22 letters (שם)

Avraham Avinu did not just understand these things, he was able to harmonize his entire

עם הארץ הנשים והקטנים אינם יודעים אלא הצורה של עץ ושל אבן וההיכל של אבנים שנתחנכו מקטנותם להשתחוות לה ולעבדה ולהשבע בשמה והחכמים שהיו בהם כגון כהניהם וכיוצא בהן מדמין שאין שם אלוה אלא הכוכבים והגלגלים שנעשו הצורות האלו בגללם ולדמותן וגו'

וכעין זה פירש הרמב"ן, החינוך, הכוזרי וספר העיקרים.

א מצד הבריאה מכיר שיש בורא יזה נקרא מעשה בראשית ב מצד ההנהגה וזה נקרא מעשה מרכבה אאיך הש"י רוכב על הברואים.

והם ב' מדריגות דראיה וידיעה של אבות ומרע"ה הנזכר בזוהר וארא כג א ע"ש שהאבות השיגו מצד הברואים

כמשאז״ל (בר״ר ר״פ לך לך) באברהם אבינו ראה בירה דולקת וכו׳ והיא נקרא ראייה דאתגליא ולכן נקרא אותו שם אצלם שם בכתוב

המורה שאמר לעולמו די דרז"ל (חגיגה יב.) ופ׳ הרבי רב בונים זצ"ל שיש די בבריאה זו להכיר אלוקותו על ידו וידיעה הוא בהנהגה כמ"ש הוידעני נא דרכיך וגו' ע"ש

ובלילה והיה תמיה היאר אפשר שיהיה הגלגל הזה נוהג תמיד ולא יהיה לו מנהיג ומי יסבב אותו כי אי אפשר שיסבב את עצמו ולא היה לו מלמד ולא מודיע דבר אלא מושקע באור כשדים בין עובדי כוכבים הטפשים

¹רמב״ם הלכות עבודת כוכבים פ׳ א: אבל צור העולמים לא היה שום אדם שהיה מכירו ולא יודעו אלא יחידים בעולם כגון חנוך ומתושלח נח שם ועבר ועל דרך זה היה העולם הולך ומתגלגל עד שנולד עמודו של עולם והוא אברהם אבינו: השגת הראב״ד הל' עבודת כוכבים פ' א: א״א ותמה אני שהרי היו שם שם ועבר איך לא היו מוחין ואפשר כי מוחים היו ולא אירע להם שישברו את צלמיהם לפי שהיו מתחבאים מהם עד שבא אברהם ושבר צלמי אביו]:

רמב"ם הלכות עבודת כוכבים א ג: ולא היה לו מלמד ולא מודיע דבר אלא מושקע באור כשדים בין עובדי כוכבים 2 הטפשים ואביו ואמו וכל העם עובדי כוכבים והוא עובד עמהם

רב צדוק הכהן, צדקת הצדיק ס' קפט: ב' מיני השגות אלוקות יש: ³

⁴ ראש הפילוסופים

השגת הראב״<u>ד הל׳ עבודת כוכבים פ׳ א: א״א יש אגדה בן שלש שנים שנאמר עקב אשר שמע אברהם בקולי מנין עקב. 5 </u> <u>וכן בנדרים לב ע"א: בן ג' שנה הכיר אברהם את בוראוו אמנם הרבמב,ם כתב שב40 הכיר את בוראו והכסף משנה על</u> הרמב"ם שם תירץ שבג' התחיל להכיר ובארבעים נשלם הבנתו רמב"ם הל' עבודת כוכבים פ' א: (ג) כיון שנגמל איתן זה התחיל לשוטט בדעתו והוא קטן והתחיל לחשוב ביום

רמב"ם הל' עבודת כוכבים פ' א: (ג) ואביו ואמו וכל העם עובדי כוכבים והוא עובד עמהם ולבו משוטט ומבין עד 6 שהשיג דרך האמת והבין קו הצדק מתבונתו הנכונה וידע שיש שם אלוה אחד והוא מנהיג הגלגל והוא ברא הכל ואין בכל הנמצא אלוה חוץ ממנו וידע שכל העולם טועים ודבר שגרם להם לטעות זה שעובדים את הכוכבים ואת הצורות עד שאבד האמת מדעתם

רמב"ם הל' עבודת כוכבים פ' א: (ג) ובן ארבעים שנה הכיר אברהם את בוראו 7

 $^{^{8}}$ כוזרי מאמר ד ס' נה

⁹ השתלשלות

ר' צדוק הכהו- מחשבות חרוץ ריש ס' יא דף 83).

being with what he saw. This allowed him to intuit all of the Torah and its Mitzvos, since the Torah is but a higher level of the creation-reality¹ and therefore completely in harmony with the inner logic of creation. Actually, perceptive scientists throughout the ages have marveled on how remarkable it is that higher, more abstract forms of thinking are in harmony with the physical world around us.

As exalted as he became, Avraham's basic conclusions are accessible also to us: Everywhere he looked he saw incredible order of the level which demanded a higher intelligence overseeing and guiding the whole process². The Derech HaSH-m explains that to this day, physics, biology, astronomy or any exploration of the world of nature will lead us back to G-d, allow us to know Him at some level and to understand what He does³. The more we reflect on the incredible depth and complexity of His creatures, the more we will be in awe of Him, want to praise Him and come to love him⁴. Moreover, animals are full of specific traits and actions from which we can learn. Thus Chananiah, Mishal and Azariah learned Mesirus Nefesh from frogs and the Sages tell us that we can learn Tznius from a cat⁵.

It is clear that nature was a great source of G-d awareness for many of our great ancestors, and we all inherited from the Avos a spiritual, genetic sensitivity to access a basic appreciation of G-d through nature⁶. The Avos, Moshe Rabbeinu and David Hamelech¹ all

The Maharal's opinion is that it was only Avraham Avinu of the Avos who kept the Torah. He gives two reasons for this:

תפארת ישראל למהר"ל פ"כ:

אברהם אבינו היה מיוחד ביותר לקיים כל התורה, כי מעלת אברהם דבקה בכחמה עליונה ... [ו]התורה הוא השכל העליון

ועוד ... כי מדת אברהם היא מדת התורה כי התורה תקרא תורת חסד דכתיב (משלי לא) ותורת חסד על לשונה, וזה כי התורה דרכיה דרכי נועם וכל נתיבותיה שלום, ואף כאשר תמצא בתורה מיתות וכריתות אין תכלית התורה רק להעמיד הטוב בעולם שלא יהיה נמצא שום רע.

²בראשית רבה (ריש פ׳ לך לך – לט א): אמר רבי יצחק משל לאחד שהיה עובר ממקום למקום וראה בירה אחת דולקת. אמר תאמר שהבירה זו בלא מנהיג? הציץ עליו בעל הבירה. אמר לו 'אני הוא בעל הבירה'. כך שהיה אבינו אברהם אומר תאמר שהעולם הזה בלא מנהיג? הציץ עליו הקב"ה ואמר לו, 'אני הוא בעל העולם'.

דרך ה': ח"א פ"א ס"ב³

אמנם, גם מצד החקירה במופתים הלמודיים יאמתו כל הענינים האלה, ויוכח היותם כן מכח הנמצאות ומשיגיהם אשר אנחנו רואים בעינינו על פי חכמת הטבע, ההנדסה, התכונה ושאר החכמות, שמהם תלקחנה הקדמות אמיתיות אשר יולד מהן ברור הענינים האמיתיים האלה.

בי התורה הל' ב' מהל' מהל' ב' 4

והיאך היא הדרך לאהבתו ויראתו. <u>בשעה שיתבונן האדם במעשיו וברואיו הנפלאים הגדולים ויראה מהן חכמתו שאין</u> לה ערך ולא קץ מיד הוא אוהב ומשבח ומפאר ומתאוה תאוה גדולה לידע השם הגדול

ושם הל' א: הקל הנכבד והנורא הזה מצוה לאהבו וליראה אותו שנאמר ואהבת את ד' א-לקיך. ונאמר את ה' אלקיך תירא

(ואילו בספר המצוות מ"ע ג ג (אהבתו):

היא שצונו באהבתו יתעלה. וזה שנחשוב ונתבונן במצותיו ומאמריו ופעולותיו עד שנשיגהו ונהנה בהשגתו בתכלית ההנאה, וזאת היא האהבה המחוייבת, ולשון ספרי לפי שנאמר ואהבת את ה' אלקיך איני יודע כיצד אוהב את המקום תלמוד לומר והיו הדברים האלה אשר אנכי מצוך היום על לבבך שמתוך כך אתה מכיר את מי שאמר והיה העולם. עכ"ל ושניהם אמת)

⁵צדקת הצדיק קעג: כל הדברים הטבעיים הם עושים רצון הש"י ... וצריך האדם ללמוד מהם כדרך שאמרו בפסחים (נג:) דחנניה מיארל ועזריה למדו ק"ו מצפרדעים ואע"פ שהם אינם בעלי בחירה רק מ"מ למידים שעשיית רצון הש"י הוא ג"כ במס"נ ... הגם דבטבע כל הברואים לברוח מדבר המזיקם ומזה למידים לבחירה ג"כ ... אבל בפעולה שיש בה קה"ש צריך למסירת נפש כמוהם.

⁶צדקת הצדיק קפט: השגת הראייה של האבות שהם כוללים כל הנפשות כולם מישראל זה אפשר לכל אחד אף שאינו תלמיד חכם להשיג. שהשגה זו מוטבע בו מאבותיו מצד שהוא זרע אברהם יצחק ויעקוב

¹ הנורה means that the logic of the world is in harmony with the logic of the תורה. Since man was also created from that תורה, the logic of man is similarly in harmony with the logic of the world.

learned to be great leaders by first being shepherds and being with nature. The Sages left us a beautiful work on nature, aptly called פרק שירה. And all Jews sensitize themselves to nature every morning by saying the מסוקי דומרה. Rav Simshon Repahel Hirsch once commented: "What will I answer when asked; 'Raphael, did you see my beautiful Alps?""

It was he who said: "Two revelations are given us, Nature and the יערות דבש." The יערות דבש shows how maths, musics and other natural worldly knowledge (as opposed to philosophy, etc.), all get us closer to G-d⁴ and the Maharal calls the world of a nature a ladder which we can climb on to reach the higher realms of Torah⁵.

ii-Physical world is world of הכרח, therefore the השגחה seen through the order

The physical world is world of חכרת, therefore the השגחה is seen through the order. The use of בראשית throughout אלוקים means that the world was created according to set patterns or laws = מדת הדין. This underlies the whole possibility of science, which relies on the fact that the world is consistently logical. However, when the Torah was given, we began to rely primarily on knowledge of Torah to know and have a relationship with G-d. This is because study of the physical world is a far less reliable method than study of the Torah. The accessible to all- but it seems that understanding the physical world through Torah is not. (Unusual people are able to work in the reverse: they are actually able to discuss the physical world by study of the Torah. This is called the study of study of the Torah. This is called the study of study of the Torah.

⁵ מהר"ל נתיב התורה פ"יד - ודבר זה בארו חכמים במסכת ברכות (נ"ח ע"א) הרואה חכמי אומות העולם אומר ברוך שנתן מחכמתו לבשר ודם והרואה חכמי ישראל אומר ברוך שחלק מחכמתו ליראיו... לשון נתינה משמע אינו מן עצם החכמה שהיא אל השי"ת ... שם חכמה עליה רק שאין חכמתן חכמה אלקית נבדלת מן הגשמי לגמרי. ואם כן מזה נראה החכמה שהיא אל השי"ת ... שם חכמה עליה רק שאין חכמתן חכמה אלקית נבדלת מן הגשמי לגמרי. ואם כן מן השם יתברך כי יש ללמוד חכמת האומות, כי למה לא ילמד החכמה שהיא מן השם יתברך שהרי חכמת האומות גם כן מן השם יתברך שהרי נתן להם מחכמתו יתברך ... אבל החכמות לעמוד על המציאות וסדר העולם בודאי מותר ללמוד ... כי החכמה הזאת היא כמו טולם לעלות בה אל חכמת התורה... (מס' שבת עה:)... מנין שמצוה (על האדם) לחשוב תקופות ומזלות שנאמר (ושמרתם ועשיתם) כי היא חכמתכם ובינתכם לעיני כל העמים, מפני כי האומות הם שרוצים להתחכם בחכמה החושב תקופות ומזלות... ומה שאמר כי היא חכמתכם לעיני כל העמים, מפני כי האומות הם שרוצים להתחכם בחכמה הזאת ביותר... ומזה נלמוד כי כל דבר שהוא לעמוד על מהות העולם יש לאדם ללמוד, ומחויב הוא בזה כי הכל מעשה השה ויש לעמוד עליהם ולהכיר על ידי זה בוראו

רמב"ן, דרוש תורה תמימה :"חכמי הגויים אינם יודעים ביצירה מה שיודע קטן בישראל. ודבר ברור הוא שרוב תועלת שאר החכמות אינה אלא להיות סולם לזו ולחכמה שקורין הם ידיעת הבורא..."

¹ Tehilim is full of this idea.

הללו את יהוה מן הארץ. תנינים וכל תהמות: אש וברד שלג וקיטור. רוח סערה עשה דברו: ההרים וכל גבעות. עץ פרי וכל ארזים: החיה וכל בהמה. רמש וצפור כנף:

³ Note at end of 18th letter in the Nineteen Letters.

⁴ See Appendix J where we have brought the יערות דבש in full.

⁷ כוזרי: Our faith from טיני, which we personally witnessed, not בראשית, which requires either scientific speculation or reliance on a kabbalistic מוטורה.

⁸חגיגה יא: אין דורשין בעריות בשלשה ולא במעשה בראשית בשנים ולא במרכבה ביחיד אלא אם כן היה חכם ומבין מדעתו

הסתכל באורייתא וברא עלמא means that the logic of the world is in harmony with the logic of the חורה. Since man was also created from that תורה, the logic of man is similarly in harmony with the logic of the world.

It is a remarkable fact that when man thinks in a pure system of abstract logic such as mathematics, that logig turns out to be consistent with the logic of the world. As Plato put it, "G-d ever geometrizes". Carl Gustav Jacobi commented, "The Great Architect of the Universe now appears as a pure mathematician." (Jacobi was a nineteenth century Prussian mathematician. Quoted in the Time-Life book on mathematics p. 9)

"Our minds which invent mathematics, conform to the reality of the cosmos. For example the division of the circumference of a circle by its diameter yields the number pi - 3.14159... Pi turns up in equations that describe subatomic particles, light and other quantities that have no obvious connection to circles. This shows that human invented mathematics somehow tuned into the truths of the cosmos. (John Polkinghorne in Newsweek, July 27, 1998)

"This seems to be telling us that something about human consciousness is harmonious with the mind of G-d." (Carl Feit, cancer biologist at Y.U., ibid.)

There was no reasonable expectation that, using logic alone, we would be able to understand the world:

"The most incomprehensible thing about the world, is that it is comprehensible," Einstein, (in Time-Life book on energy p. 137)

"There can be no living science unless there is widespread instinctive conviction in the existence of an order of things" (Alfred North Whitehead in Science and the Modern World).

"Our minds which invent mathematics, conform to the reality of the cosmos. For example the division of the circumference of a circle by its diameter yields the number pi - 3.14159... Pi turns up in equations that describe subatomic particles, light and other quantities that have no obvious connection to circles. This shows that human invented mathematics somehow tuned into the truths of the cosmos. (John Polkinghorne in *Newsweek*, July 27, 1998)

"This seems to be telling us that something about human consciousness is harmonious with the mind of G-d." (Carl Feit, cancer biologist at Y.U., ibid.)

There was no reasonable expectation that, using logic alone, we would be able to understand the world:

"The most incomprehensible thing about the world, is that it is comprehensible," Einstein, (in Time-Life book on energy p. 137)

"There can be no living science unless there is widespread instinctive conviction in the existence of an order of things" (Alfred North Whitehead in *Science and the Modern World*).

iii-Therefore, study of the physical world can be the starting point for discovering the Truth

אברהם אבינו used this method¹.

מאירי: ריש פ״ב דחגיגה: וענין מעשה בראשית הוא ידיעת חכמת הטבע ונכלל בה ידיעת שני עולמות ר״ל עולם היסודות ועולם הגלגלים.

רמב"ם: (הל' יסודי התורה פ"ד ה"יא): ...ולמה אין מלמדין אותו לרבים לפי שאין כל אדם יש לו דעת רחבה להשיג פרוש ביאור כל הדברים על בוריין. ועיין עוד ברמב"ן בראשית א: א

> רב צדוק הכהן, צדקת הצדיק ס' קפט: ב' מיני השגות אלוקות יש: א מצד הבריאה מכיר שיש בורא יזה נקרא מעשה בראשית ב מצד ההנהגה וזה נקרא מעשה מרכבה אאיך הש"י רוכב על הברואים.

והם ב' מדריגות דראיה וידיעה של אבות ומרע"ה הנזכר בזוהר וארא כג א ע"ש שהאבות השיגו מצד הברואים כמשאז"ל (בר"ר ר"פ לך לך) באברהם אבינו ראה בירה דולקת וכו' והיא נקרא ראייה דאתגליא ולכן נקרא אותו שם אצלם שם בכתוב בראשית רבה (ריש פ׳ לך לך – לט א): אמר רבי יצחק משל לאחד שהיה עובר ממקום למקום וראה בירה אחת דולקת. אמר תאמר שהבירה זו בלא מנהיג! הציץ עליו בעל הבירה. אמר לו יאני הוא בעל הבירה׳. כך שהיה אבינו אברהם אומר תאמר שהעולם הזה בלא מנהיג! הציץ עליו הקב,ה ואמר לו, יאני הוא בעל העולח׳.

The דרך די - Science as a proof for G-d and the way He runs the world¹. This is a way of knowing G-d and what he does.

רמב"ם- Science/nature as a way of loving and fearing Him, i.e. as a way of having a relationship with Him:

רמביים פייב מהלי יסודי התורה הלי ב:

והיאך היא הדרך לאהבתו ויראתו. <u>בשעה שיתבונן האדם במעשיו וברואיו הנפלאים הגדולים ויראה מהן</u> <u>חכמתו שאין לה ערך ולא קץ</u> מיד הוא אוהב ומשבח ומפאר ומתאוה תאוה גדולה לידע השם הגדול².

רמביין, דרוש תורה תמימה

המורה שאמר לעולמו די דרז״ל (חגיגה יב.) ופ׳ הרבי רב בונים זצ״ל שיש די בבריאה זו להכיר אלוקותו על ידו ... וידיעה הוא בהנהגה כמ״ש הוידעני נא דרכיך וגו׳ ע״ש

משך חכמה כו ד: ולכן האומר הלל הגדול בכל יום (שבת קיח:), שמורה שראוי להודות רק על הנך פעולות שעל דרך נס, אבל מפעלות הטבע אין צריכים להיוצר אחרי שבראן ה"ז מחרף ומגדף, אבל כל האומר תהלה לדוד בכל יום ברכות ד:), שזה מדבר על מפעלות סדור הטבעיי, אשר בכל יום, כמבואר, מובטח שהוא בן העולם הבא.

והנה על דרך נס בלתי סדור הטבעיי אינו מן הפלא, כמו מן וכיו״ב, אבל הענין הנפלא בהטבע הוא ההזנה התמידית, שזה קיום הנמצאים והרכבת הנפרדים, ובדרך טבעי כל יום קבוע הזנה לאלפי אלפים בלי מספר נמצאים, מזון, אשר כל אחד יזון מן הטבע, הוא פועל מורה על חכמה ושלמות וכבוד השי״ת למבין, יותר ממה שמורה הנסיים, ולכן אמרו (ברכות ד:) משום דאיתא באלפא ביתא, שענין אלפא ביתא מורה על סדור טבעיי, שאינו מדלג, רק שהולך מאלף עד תי״ו. ולכן בברכת המאורות בחול ושבת סדרו באלפי ביתא. והוא כמו סדור הטבע, שמתנהג בלא מרוצה, רק שהולכין הסבות קשורות והעלולים מסודרים, ובאופו הסידור הטבעיי אם נותו מזוו להנמצאים אז הוא עניו פלא.

וזה משביע לכל חי רצון (תהלים קמה, טז). והנה בענין הטבע צריך גם פועל היצורים, וזה כמו חרישה, וקצירה, וזריעה וכיו"ב, רק שהאדם מוצא הכל מוכן לפניו וכל העולם עומדים הכן לשרתו, ומכין מזון לכל בריותיו אשר ברא. ולכן דייק רש"י (ברכות ד:) משום דאית ביה תרתי, דאתי באלף בית ויש בו שבח הכנת מזון לכל חי, דעל דרך סדור הטבעי והכל מוכן זה עיקר מטרה יותר ממפעלות הנסיי, אשר ע"ז נאמר בהלל הגדול נותן לחם לכל בשר (שם ס"פ קלו), שהכל על הפלאות נגד הטבע שחשב שמה. ולכן אדם הראשון קרא שמו ה'.

שהוא ראה הפעולות איך נעשו והיסודות איך נבראו, שזה מה שמורה איך השם הוא נותן הצורות והבריאה ביסודות. ולזה אמרו במדרש (בראשית רבה יז-ה) אני ה' הוא שמי, הוא שמי שקרא לי אדם הראשון. אבל אברהם הכיר הטבע והתבונן בה, ומדרכי הטבע והליכותיה הבין מפעלות תמים דעים, והכיר היוצר מתוך הצורה ויש מנהיג לבירה זו (שם ר"פ לט), וע"ז מורה שם אדנות, ולא היה אדם שקרא להקב"ה אד' עד שבא אברם (ברכות ז:), כי שם ועבר ומתושלח ידעו הויות הנמצאים בחידוש מהשם מקבלת אדם הראשון והשיגו דרכי ה' מן הסבה אל המסובב, ומהעילה להעלול, ומן המוקדם להמאוחר, לא כן אברהם, השיג מן המסובב ומן המאוחר למוקדם, עד כי השיג היוצר השם האמיתי, שהוא בראן וחדשן מן האפס וההעדר המוחלט, וע"ז יורה שם אדנות. והשגה זו העיקרית בכונת הבריאה, לכן אמרו בהבראם באברהם (בראשית רבה יב-ח), וכמו שהאדם שאינו מבין על מציאות והשגחת הבורא רק מן הנבראים יודע ומבין שנבראו ומושגחים בפעולות בורא מחויב במציאותו ובחכמתו המתאחדת עמו, וזה הבנה כהשגת אברהם, וכמוש"א (בראשית ב, ד) ביום עשות ה' אלקים ארץ ושמים, זה על ההשגה מלמטה למעלה, מן המאוחר אל המוקדם.

דרך ה': ח"א פ"א ס"ב¹

אמנם, גם מצד החקירה במופתים הלמודיים יאמתו כל הענינים האלה, ויוכח היותם כן מכח הנמצאות ומשיגיהם אשר אנחנו רואים בעינינו על פי חכמת הטבע, ההנדסה, התכונה ושאר החכמות, שמהם תלקחנה הקדמות אמיתיות אשר יולד מהן ברור הענינים האמיתיים האלה. ואמנם, לא נאריך עתה בזה, אלא נציע הקדמות לאמתם ונסדר הדברים על בורים, כפי המסרת שבידינו והמפורסם בכל אמתנו.

ישם הל' א: הקל הנכבד והנורא הזה מצוה לאהבו וליראה אותו שנאמר ואהבת את ד' א-לקיך. ונאמר את ה' אלקיך ²חירא

(ואילו בספר המצוות מ"ע ג (אהבתו):

היא שצונו באהבתו יתעלה. וזה שנחשוב ונתבונן במצותיו ומאמריו ופעולותיו עד שנשיגהו ונהנה בהשגתו בתכלית ההנאה, וזאת היא האהבה המחוייבת, ולשון ספרי לפי שנאמר ואהבת את ה' אלקיך איני יודע כיצד אוהב את המקום תלמוד לומר והיו הדברים האלה אשר אנכי מצוך היום על לבבך שמתוך כך אתה מכיר את מי שאמר והיה העולם. עכ"ל ושניהם אמת) ות

אינה אלא להיות סולם לזו ולחכמה שקורין הם ידיעת הבורא..."

צדקת הצדיק קעג: כל הדברים הטבעיים הם עושים רצון הש״י ... וצריך האדם ללמוד מהם כדרך שאמרו בפסחים (נג:) דחנניה מיארל ועזריה למדו ק״ו מצפרדעים ואע״פ שהם אינם בעלי בחירה רק מ״מ למידים שעשיית רצון הש״י הוא ג״כ במס״נ ... הגם דבטבע כל הברואים לברוח מדבר המזיקם ומזה למידים לבחירה ג״כ ... אבל בפעולה שיש בה קה״ש צריך למסירת נפש כמוהם.

ספר צדקת הצדיק - אות רלב

רלב) כל עניני העולם וכל הנבראים מזכירים לאדם שיש בורא וכמו שאמרו (ברכות ו' ע"ב) כל העולם כולו לא נברא אלא בשביל זה פירוש שידע זה על ידה ויכיר שיש בורא עולם וכמו ששמעתי על מלאה הארץ קניניך (תהלים ק"ד כ"ד) פירוש לקנות על ידם אותם והשם יתברך מזמין לאדם בכל יום דברים וענינים שונים אולי על ידם יבוא לזכירה בבורא.

iv-The reason we use תורה and not the physical world is because the latter is too unreliable a method

Through the יחידים, תורה can reach a complete understanding of the physical world

:חגיגה יא

אין דורשין בעריות בשלשה ולא במעשה בראשית בשנים ולא במרכבה ביחיד אלא אם כן היה חכם ומבין מדעתו

מאירי: ריש פייב דחגיגה: <u>וענין מעשה בראשית הוא ידיעת חכמת הטבע</u> ונכלל בה ידיעת שני עולמות רייל עולם היסודות ועולם הגלגלים.

רמביים: (הלי יסודי התורה פייד היייא):

...ולמה אין מלמדין אותו לרבים לפי שאין כל אדם יש לו דעת רחבה להשיג פרוש ביאור כל הדברים על בוריין.

משך חכמה על שמות פרק כד פסוק יב:

והתורה והמצוה אשר כתבתי להורתם - אשר כתבתי לא יתכן על התורה והמצוה, ועיין רשב"ם, ונראה דאלמלא נתנה תורה היו למדין צניעות כו' גזל מנמלה כו' (גמ' עירובין ק סע"ב), לכן אמר אשר כתבתי בספר הטבע אשר יצרתי שזה ספר של השי"ת היוצרה, ולפי דברי ריש לקיש בריש ברכות (דף ה) הכוונה על אשר כתב השם בנשמות כלל ישראל שכל אחד קיבל חלקו מסיני (שמות רבה כח-ד) והוא כתוב על לוח לבם חרותה במקור נשמותיהם כל מה שתלמיד ותיק עתיד לחדש (ע' ירושלמי פאה ב-ו) וזהו גמרא ודו"ק.

וה ברכות דף ה' אשר כתבתי זה נביאים וכתובים, פירוש דאמרו בנדרים פ"ג (דף כב:) ברוב חכמה רוב כעס שאלמלא חטאו ישראל לא ניתן להם אלא תורה וספר יהושע בלבד כו', הרי הנביאים וכתובים נאמרו כשחטאו ישראל א"כ קודם שחטאו לא היה ביכולת הכתב להראות לשום נברא שידיעתם מכרחת הבחירה רק אשר כתבתי, השי"ת בעצמו, שידיעתו אינה מכרחת להבחירה כדברי רבינו הרמב"ם (ה' תשובה ספ"ה) שידיעת השי"ת אינה כידיעת הנבראים שהיא עצמותו ואינה מתוספת עליו ודו"ק.

(see also רמביין בראשית א: א

CHAPTER A: iv-The Reason We Use תורה AND NOT THE PHYSICAL WORLD IS BECAUSE THE LATTER IS TOO UNRELIABLE A METHOD

On the other hand, the תורה is accessible to all- but it seems that understanding the physical world through Torah is not.

כוזרי: Our faith from סיני, which we personally witnessed, not בראשית, which requires either scientific speculation or reliance on a kabbalistic מסורה.

The minimal requirements of belief re: the natural world is that G-d created world and continues to recreate it. (המחדש בטובו בכל יום תמיד מעשה When it comes to specifics, however, there is מחלקת on major areas of בראשית e.g.:

חגיגה יב.

תייר בייש אומרים <u>שמים נבראו תחלה</u> ואחייכ נבראת הארץ שנאמר בראשית ברא אלקים את השמים ואת הארץ ובייה אומרים <u>ארץ נבראת תחלה</u> ואחייכ שמים שנאמר ביום עשות הי א-לקים ארץ ושמים... וחכייא זה וזה כאחת נבראו

יומא נג:

מתני*י* משניטל ארון <u>אבן היתה</u> שם מימות נביאים ראשונים <u>ושתייה היתה נקראת</u> גבוה מן הארץ שלש אצבעות ועליה היה נותן (המחתה)

ושם בגמי נד:

תנא <u>שממנה הושתת העולם</u> תנן כמאן דאמר מציון נברא העולם דתניא רבי אליעזר אומר עולם מאמצעיתו נברא שנאמר בצקת עפר למוצק ורגבים ידבקו רבי יהושע אומר עולם מן הצדדין נברא שנאמר כי לשלג יאמר הוי ארץ וגשם מטר וגשם מטרות עזו רבי יצחק (נפחא) אמר אבן ירה הקב"ה בים ממנו נשתת העולם שנאמר על מה אדניה הטבעו או מי ירה אבן פנתה וחכמים אומרים מציון נברא שנאמר מזמור לאסף קל אלקים די ואומר מציון מכלל יופי ממנו מוכלל יפיו של עולם תניא ר' אליעזר הגדול אומר אלה תולדות השמים והארץ בהבראם ביום עשות ה' א-לקים ארץ ושמים <u>תולדות שמים משמים נבראו תולדות הארץ מארץ נבראו</u> וחכמים אומרים אלו ואלו מציון נבראו שנאמר מזמור לאסף קל אלקים ד' דבר ויקרא ארץ ממזרח שמש עד מבואו ואומר מציון מכלל יופי א-לקים הופיע ממנו מוכלל יופיו של עולם: נטל את הדם ממי שממרס בו וכו:'

וכן בתנחומא יש חולקים אם ביום הראשון נברא כל העולם או בכל יום ויום נברא ובבראשית רבה k: א רי יהודה אומר האורה נבראת תחילה... ורי נחמיה אמר העולם נברא תחילה. (עיין עוד בב"ר יב:ד)

Therefore the specifics of how G-d created the world and what is the nature of the scientific laws He uses to create and run the world are not fundamental principles of faith and therefore are open (within certain constraints) to differing opinions. Had there been a detailed oral tradition regarding these things, there would have been no מחלקת:

רמביים הקדמה לפירוש המשניות (סדר זרעים See 4th page)

<u>החלק הראשון</u> פירושים מקובלים מפי משה ויש להם רמז בכתוב ואפשר להוציאם בדרך סברא <u>וזה אין בו</u>

<u>מחלוקת</u> אבל כשיאמר האחד כך קבלתי אין לדבר עליו: <u>חלק השני</u> הם הדינים שנאמר בהן הלכה למשה

מסיני ואין ראיות עליהם כמו שזכרנו <u>וזה כמו כן אין חולק עליו</u> :<u>החלק השלישי</u> הדינין שהוציאו על דרכי

הסברא <u>ונפלה בה מחלוקת</u>... וכל מה שידמה לאלו המחלוקות <u>שהם ענפי הענפים</u> ...<u>והעיקרים כמו כן הנתונים לזה כמו העיקרים הנתונים לזה.</u>

CHAPTER B: SCIENCE MUST BE SUBSERVIENT TO מורה

 $i-Juda ism\ pro\ technical\ progress$

ii-Through the תורה we reach the physical world

a-Science, the surface reason, spirituality, the underlying reason

CHAPTER B: SCIENCE MUST BE SUBSERVIENT TO תורה

i-Judaism pro technical progress

a-Judaism never felt itself in conflict with science.

It was Christianity, not Judaism, which had a historical conflict with science:

Thus when Galileo supported Copernicus's opinion that the sun and not the earth was at the center of the universe, he was forced by the Church to withdraw his views. In 1997, the Pope apologized for this position of the Church.

Until Copernicus, Aristotle and Ptolemy reigned supreme. The Church and science agreed: the earth was the center of the universe; the planets, the sun and the stars all revolved around the earth in eight spheres made of an immutable substance; their movements were circular. Copernicus, followed by Tycho Brahe (1541-1601) and Johannes Kepler (1571-1630), challenged this doctrine, introducing a sun centered universe. For over a century, the church fought this doctrine, seeing it as a challenge to man's centrality in the world. Copernicus escaped the more radical persecutions that would inflict Bruno and Galileo later on. This was partially because his doctrine was still considered weak, not being able to explain why, if the earth moves, we do not fall off it (gravity was unknown), why the position of the stars does not appear to constantly change and why there is no detectable wind induced by the motion. Nevertheless, theologians tried to prevent publication of Copernicus's "The Revolutions", John Calvin pointed out that the Bible says that the world cannot be moved, and Martin Luther condemned Copernicus.

Giordano Bruno (1548-1600) was originally ordained as a priest, but led a troubled life with the church. Although excommunicated twice, he still managed to become one of the greatest scientists of his age. In 1593, he underwent the beginnings of a seven year trial by the Roman Inquisition who demanded that he retract his Copernican views. He declared that he had nothing to retract and was burned to death 9 days later.

In 1616, the Church decreed that Copernicus is "false and erroneous" and banned his writings. The Church view continued to be the Aristotelian one that the world was the center of the universe, that it did not move, and that the sun rotated the earth. In 1632, Galileo was tried by the Roman inquisition for espousing the Copernican theory of the structure of the universe, thereby violating the decree of 1616. He was not given a copy of the charges against him, nor was he allowed someone to defend him. He was given the choice of publicly retracting or of being killed. In a decision that some have criticized as damaging the cause of science, Galileo chose life. He was forced to state that "I abjure, curse and detest the aforesaid errors and heresies." Aged seventy, he was confined to his villa under strict house arrest for the remaining days of his life.

In the ensuing decades, the Catholic Church lost control of the government and the people. On the day that Galileo died, Isaac Newton was born and the scientific revolution begun by Copernicus was complete.¹

.

¹ (Culled from *The Science Class You Wish You Had ...* by David E. Brody and Arnold R. Brody)

b-הלכה relates to contemporary science as being normative:

For example, it obligates us to use most up to date medical procedures:¹

אברהם בן הרמביים; מאמר על אודות דרשות חזייל (בעין יעקב הקדמה) ... לא נתחייב מפני גודל מעלת חכמי התלמוד ...שנטען להם ונעמיד דעתם בכל אמריהם ברפואות ובחכמת הטבע והתכונה (עייש)

We use contemporary knowledge even though we know that the knowledge will date.

חלכה demands a certain knowledge of science or access to those with knowledge. See

Appendix J - יערות דבש where Rav Yonasan Eybeshitz discusses the Torah benefits of each one of these areas ²

Therefore:

a) The Sages knew science:³

The Kuzari, מאמר רביעי. כח-לא, describes the amazing detail which the sages had of the physical world. They had a precise undestanding of the relationship of the cycles of the moon to that of the sun, many centuries ahead of Western knowledge of the subject. This required knowledge of mathematics as well as of the exact appearance of the constellations in what parts of the sky at particular times of the year, and where the moon would be seen in relation to these. They could tell, without internal examination, whether a particular type of blood was coming as a menstrual flow or was coming from another source. They could do this merely by looking at a spot of blood. They knew which diseases to an animal were fatal and which were not, and they had detailed biological understanding of exactly how different animals would inflict damage through clawing. There are many other examples.

b) Judaism believes in taking advantage of the best current technology:

סתיים Computer checks of

Torah Mosdos at cutting edge of Internet

(Though it is recognized that technology is often a vehicle for the transmission of negative spiritual values).

¹ See אמונה וה his (פ״ה) אמונה ובטחון who shows, in considerable detail, that the sages and others who lived in their time knew an enormous amount of medical and other scientific knowledge. Much of this knowledge was subsequently lost. Some of it was rediscovered by modern science and medicine. Other areas seem to elude us to this day.

² See also *Challenge*, A Radkowsky pp. 77 (bottom)-79

³ See *Challenge*, A Radkowsky p. 88, paragraph beginning "We know..."

c) Being a scientist, doctor, etc. has always been considered an acceptable profession for an Orthodox Jew.¹

ii-Through the תורה we reach the physical world

Because the world was created from the Torah², the Torah contains within all the wisdom we could ever hope to find in the world³. The תקון העולם is a manual of תקון העולם through (amongst other things) sanctification of the physical. - מקדש הגשמיות:

Rabbi S.r. Hirsch explains that a person who does not see the natural world as an extension of his Torah, but rather sees it as something independent and separate, is as if he has cut himself from his life source. This, he says, is the meaning of the Mishneh in Avos:

אבות ג:ט

רבי יעקב אומר: המהלך בדרך ושונה ומפסיק ממשנתו ואומר: מה נאה אילן זה, מה נאה ניר זה - מעלה עליו הכתוב כאילו מתחייב בנפשו.

i.e a person who is walking along the way, studying Torah, and, when he notices a beautiful tree, etc. feels that he has stopped busying himself with Torah, he is as if he has cut himself from his life force⁴.

רמביין הקדמה לחומש:

וגם כן כל הנאמר בנבואה ממעשה מרכבה ומעשה בראשית, והמקובל בהם לחכמים, עם תולדת ארבע הכחות שבתחתונים, כח המחצבים, וכח צמחי האדמה, ונפש התנועה, ונפש המדבר, בכולם נאמר למשה רבינו בריאתם, ומהותם, וכחותם, ומעשיהם, ואפיסת הנפסדים מהם, והכל נכתב בתורה בפירוש או ברמז.

¹ See list of Orthodox Scientists - Addendum 2 E ii

בריש בר"ר אמרו ז"ל שהתורה היא דפוס מעשה בראשית 2

³ר' בחיי (הקדמה לחומש): כל החכמות כלן נכללות ב[תורה]

רמב"ן (הקדמה לחומש): ושלמה המלך שנתן לו החכמה והמדע, הכלל מו התורה היה לו

רוח חיים פ״ה מש״א: ועל תיקון כל העולמות רמזו חז״ל במדרש (שה״ש רבה א:ז) יודע הי׳ שלמה למתק את החרדל ע״ד שאמרו בזוה״ק דמהפך מרירא למתיקא וחשוכא לנהורא.

רמב"ן, דרוש תורה תמימה:

[״]שדוד התחיל ואמר, כי השמים מספרים כבוד אל , מפני שתנועת השמים תמידית ונצחית, וכל מתנועע צריך למניע...״ ״,תורת ה׳ תמימה משיבת נפש, כלומר שאלו ראיות ברורות לכבוד האל וכי הם מעשה ידיו הכל, תורת ה׳ שלמה יותר מזה, והיא משיבת נפש ומחכימת פתי, כלומר שמסרת כל ספק מן הלבבות,מן החכמים, ומין שאינן מבינים מהלכות שמים ומערכי כוכבים...״

^{&#}x27;ר' שמשון רפאל הירש:

[&]quot;משנתו": משנה "שלו", אותה המשנה העוסקת בעצובם החופשי של חיי האדם וכל יחסיהם עפ"י רצון בוראו ורבונו, מביאה לחיים ולהתפתחות האדם הרמוניה, שלימות מוסרית וחן מוסרי במידה גדולה יותר מהיופי האסתטי של הטבע. שכן אין משנה זו - התורה - מהווה, אלא את האחדות הפנימית ביותר של הרבגווניות המשופעת של יחסי בני האדם, באמצעות חדירתה החופשית בהם ברוח אלוקית לפי רצונו ית' - הרמוניה המגלמת את המזיגה הנעלה ביותר של יופי. והיה, כך דעת משנתנו, והמזיגה הנעלה הזאת אינה משתקפת בשעת הלימוד, והלומד מפסיק ממשנתו על-מנת להתפעל על יפיו של הטבע, הריהו כאילו חטא בנפשו, או מוטב, כאילו התחייב בנפשו; שכן לא הכיר את היוקרה והיופי של נפש אדם מוארת ומודרכת מרוח ד', שעולה לאין שיעור על כל הוד ונוי הטבע.

⁽i.e. when he looked at the tree/field he did not see this as a continuation of his Torah)

a-Science, the surface reason, spirituality, the underlying reason

The Maharal explains that the Sages never attempted to give scientific, medical or biological explanations to things. They were only interested in giving the inner spiritual content of the situation

מהרייל, באר הגולה (באר שישי עמי קו): חא באו חכמים לדבר מן הסיבה הטבעית כי קטון ופחות הסיבה שמחייב הטבעית כי דבק זה יאות לחכמי הטבע או לרופאים או לחכמים. אבל הם זייל דברו מן הסיבה שמחייב הטבעית כי דבק זה יאות לחכמי הטבע או לרופאים או לחכמים.

Scientific laws are explanations for what happens in the world. Behind these explanations of "what" are reasons of why, the underlying spiritual reality of things¹. Scientists exceed their mandate, and can even be dangerous, when they try to deal with the why². Ultimately, this inner content is not only in complete harmony with the outer, scientific reality, but it is the reason behind the reason

מהר״ל (שם סו): שאמרה תוְרה על אות הקשת (בראשית ט: יד-טז): את קשתי נתתי בענן והיתה לאות והיתה הקשת בענן וראיתיה לזכור ברית עולם וחכמי הטבע נתנו סיבה טבעית ...ברית ביני ובים הארץ לקשת כמו שידוע אבל הדבר הוא כך שהסיבה אשר נתנה התורה הוא הסיבה שלכל דבר יש סיבה טבעית המחייב אותו, ועל אותה הסיבה הטבעית יש סיבה אלוקית, והוא סיבת הסיבה, ועל זה דברו חכמים. כי לאדם על צורתו ומספר אבריו יש סיבה טבעית, כי אין ספר שיש לדבר זה פועל טבעי, ומכל מקום יש לאותה סיבה סיבת אלוקית, שעל סיבת הסיבה אמר (בראשית א כג): ויברא אלוקים את האדם בצלמו בצלמו ברא אותו ...

ר' חיים פרידלנדר, שפתי חיים (אמונה ובטחון ח"ב דף תמט): חכמי הטבע אינה עוסקת בלמה, התחום שבו היא עוסקת הוא המה

²שפתי חיים שם: אוי ואבוי הוא כאשר חכמי הטבע חורגים מגבולות וממגבלות חכמתם, ומנסים להסביר את הלמה, כי אז הם בודאי שוגים, וטועים, מפני שהלמה - סיבת הסיבה היא רוחנית

³ In the Sifsei Chaim (אמונה ובטחון ח״ב דף תמח), Rav Chaim Friedlander explains the Maharal, by bringing the (אַ דעת תבונות (דף סו-טי), who says that we have an eye in harmony with G-d's Eye of Providence, ears to reflect G-d's listening to our prayers, etc.

CHAPTER C: CONFLICTS & COMPATIBILITY

- i- Current Compatibility
 - a Big Bang
 - **b** Matter is Energy/Fields
 - c Probability
 - d Observer Centered Universe
 - e Punctuated theory of evolution
 - f Microbiology
 - g Archaeology
 - h Supersymmetry
 - i Theory of Relativity
 - j Recognition of Limitations
 - k Anthropic Principle
 - 1 Religious Scientists
- ii- Living the Contradiction
- iii-Science itself Accommodates Contradictions
 - a Contradictory Theories
 - **b** Competing Theories
 - 1 Dead Sea Scrolls
 - 2 Dark Matter
 - 3 Consciousness
 - **4 The Ultimate Force**
 - 5 Superconductivity
 - 6 Birds from Dinosaurs
 - 7 The Standard Model
 - c-Science is in Constant Progress
- iv-The danger of trying to explain something according to contemporary physics

CHAPTER C: CONFLICTS & COMPATIBILITY

The Nature of a Scientific Theory

Contrary to the popular perception of the layman, scientists do not claim to discover absolute truths about the world. There are always competing theories to explain any set of phenomena and, what the sceintists do is give the theory that best fits the facts at hand. This theory may later be proven to be wrong, and it may even now contradict other accepted theories. But the scientist is not bothered by this because further experimentation will ultimately prove which theories have to be abandoned or modified.

Many people are under the mistaken impression that at least one area, mathematics, does apply a rigorous notion of proof. In mathematics, a rigorous proof, a notion first set forth by Euclid around 300 B.C., is a progression of logic, starting from assumptions and arriving at a conclusion. If the chain is correct, the proof is true. If not, it is wrong.

But even a mathematics proof is sometimes a fuzzy concept, subject to whim and personality. Almost no published proof contains every step; there are just too many.

Reviewers rarely check every step, instead focusing mostly on the major points. In the end, they either believe the proof or not.

"It's like osmosis," said Dr. Akihiro Kanamori, a mathematics professor at Boston University who writes about the history of mathematics. "More and more people say it's a proof and you believe them."

Let us take as an example one of the longest-standing problems in the field — the most efficient way to pack oranges.

The packing problem dates at least to the 1590's, when Sir Walter Raleigh, stocking his ship for an expedition, wondered if there was a quick way to calculate the number of cannonballs in a stack based on its height. His assistant, Thomas Harriot, came up with the requested equation.

Years later, Harriot mentioned the problem to Johannes Kepler. the deduced astronomer who had the movement of planets. Kepler concluded that the pyramid was most efficient. That allows each layer of oranges to sit lower, in the hollows of the layer below, and take up less space than if the oranges sat directly on top of each other.

(An alternative arrangement, with each layer of spheres laid out in a honeycomb pattern, is equally efficient, but not better.) But Kepler offered no proof.

Dr. Wu-Yi Hsiang of University of California at Berkeley claimed he had a proof in 1990, and in 1993 he published an article, which was sharply criticized by mathemeticians, saying that it contained holes of logic that they did not think Dr. Hsiang could fill. Dr. Hsiang published his complete proof until 2002, and it appeared as a book (rather than in a peer-reviewed journal). But scientist do not have to spend time disprobving something they think is wrong, and few read let alone checked Dr. Hsiang's thesis¹.

_

¹ "Hsiang has not such a good track record," said Dr. Frank Quinn, a mathematics professor at Virginia Tech. "I don't want to spend time proving it's wrong." Dr. Hsiang counters that

The level of rigor and detail that mathematicians have demanded of proofs has waxed and waned over the centuries. Major mathematical fields of the 1700's and 1800's like calculus and topology developed without rigorous proofs.

"For quite some time in mathematics, arguments were basically descriptive," Dr. Kanamori said. "People would give what we would now call informal arguments."

In the belief that too much emphasis on details stifles creativity, mathematicians continue to debate how much rigor a proof requires.

In 1998, when Dr. Thomas C. Hales, a professor of mathematics at the University of Pittsburgh, offered a proof for Kepler's proposal comprising hundreds of pages. But Dr. Hales's proof of the problem, known as the Kepler Conjecture, hinges on a complex series of computer calculations.

The first group recruited to review the proof spent six years on it, but gave up, exhausted¹. Yet the proof was accepted by the mathematics community anyhow². This requires faith that the computer performed the calculations flawlessly, without any programming bugs³. Yet,

his proof offers deeper insight and that others' understanding of his techniques is inadequate.

¹ Everything checked by the reviewers, led by Dr. Gabor Fejes Toth of the Hungarian Academy of Sciences, turned out to be correct. But the prospect of reviewing every calculation proved too daunting.

² Eventually, the prestigious Annals of Mathematics Journal published only the theoretical parts of the proof, which were checked by hand. A more specialized journal, Discrete and Computational Geometry, published the computer sections.

³ In 1976, Dr. Wolfgang Haken and Dr. Kenneth Appel of the University of Illinois used computer calculations in a proof of the four-color theorem, which states that any map needs only four colors to ensure that no adjacent regions are the same color.

The work was published — and mathematicians began finding mistakes in it. In

computer techniques that are becoming more common in mathematics⁴, further lowering the old barrier of checking everything before accepting a theorem as true. (The Annals has decided that computer-assisted proofs have merit, but the journal will accord them a lower status than traditional proofs, regarding them more like laboratory experiments that provide supporting evidence⁵.)

each case, Dr. Haken and Dr. Appel quickly fixed the error.

⁴ Mathematicians like Dr. Larry Wos of Argonne National Laboratory use "automated reasoning" computer programs: they enter axioms and the computer sifts through logical possibilities in search of a proof. Because of the huge number of possibilities, a human still needs to tell the computer where to search.

"The human mind will never be replaced," Dr. Wos said, but the advantage of computers is their lack of preconceptions.
"They can follow paths that are totally counterintuitive," he said.

The software also fills in the tedious work giving the mathematician more time to contemplate other problems, and it generates as much or as little detail as a mathematician desires, telling you how each step was obtained. In 1996, Dr. Wos and a colleague, Dr. William McCune, used the software to prove a previously unsolved problem known as the Robbins Conjecture.

In a 2003 book, "Automated Reasoning and the Discovery of Missing and Elegant Proofs," Dr. Wos described new proofs and more elegant versions of known proofs discovered by computers.

Intel, the microchip giant, uses proofchecking software to check algorithms in its chips, in the hope of avoiding glitches like one in the original 1994 Pentium that caused numbers to divide incorrectly.

Current software, however cannot handle anything nearly as complex as the Kepler Conjecture.

⁵ Adapted from a NY Times article, In Math, Computers Don't Lie. Or Do They? By Kenneth Chang, April 6, 2004

i- Current Compatibility

Movement of science toward Judaism in all areas:

Below we show how a cross-section of different sciences are all moving closer to rather than further way from what Judaism has been saying about the world for thousands of years. There are still certainly contradictions. But science is still in progress. There is every reason to expect that, with time, science will resolve these contradictions as well. In the meantime we live comfortably with contradictions. We do not have to resort to highly unusual and creative interpretations of Judaism to reconcile Judaism to contemporary science apologetics. (In the long term, when science changes, this will only backfire.) We can wait, patiently, for science to do the job. As it progresses, it will naturally move toward a reconciliation with Judaism on any outstanding points of contention.

It must be remembered that Scientists create theories that explain the world in terms that are meaningful to themselves. The conceptual tools that are available to the scientist are different at different times. In our day for example, we have the computer, and was inevitable that some physicists would begin to use computer terminology to explain the basic laws of the universe. In fact, in A New Kind of Science, physicist Stephen Wolfram claims that the universe is in essence just a simple computer program. All of its complexity, up to and including ourselves, is the product of just a few, asyet-unknown instructions – the equivalent of a few lines of code in a digital computer.

Some 2,600 years ago the discovery of the laws of proportion underlying musical tones inspired followers of Pythagoras to imagine a celestial "music of the spheres" governing the paths of planets, seasons, biological cycles. and other natural rhythms.

Similarly, medieval European clockmakers so wowed Descartes, Kepler, Boyle, and other thinkers that they deemed the universe a mechanical clockwork. And now, when Wolfram says the universe is a program, he means literally, as in computer software.

All the examples quoted below belong to the Twentieth Century, i.e. to recent science. That same science, which in the past was the Western world's most powerful challenge to Judaism, is now, in the immediate pre-Messianic era, rapidly being reconciled to it. Perhaps this is to prepare the nations of the world for the Messianic era, when they too will see clearly that everything ultimately unites to express G-d's unity.¹

a - Big Bang

The Big Bang postulates that all matter "exploded" outwards from an infinitely small, infinitely dense, piece of matter (or from nothing for that matter). This was the beginning of the universe as far as we can know anything about it, including time and space.

Previously, science believed in the static universe, i.e. that the world had always existed. Jews, who believed in the Creation story, were contradicted by over 20 centuries of science! And then, in the space of forty years (from the 1920s to the 1960s) and despite the resistance of many leading scientists (including Einstein), this theory was conclusively overthrown. Suddenly a major conflict between science and Judaism had been resolved! (One of the co-discoverers of this, both of who won Nobel Prizes, is an Orthodox Jew named Arnold Penzias.)

Scientists today believe that prior to the Big Bang the world was condensed into a infinitely small point. This is indeed how the מעשה בראשית understands מעשה בראשית:

-

¹ See דעת תבונות, Rav Friedlander edition, סימן, first two paragraphs.

[היתה] מאין ...רמב״ן בראשית א א: השמים ונקודה אחרת ...נקודה פחותה מגרגיר חרדל הארץ וכל אשר עליה

For full details of the Big Bang, the fact that many leading scientists resisted accepting the Big Bang because of its religious implications and what supposedly happened before the Big Bang, see **Appendix A**. See also **k-The Anthropic Principle** in this section below for how perfectly balanced the universe was that emerged from the Big Bang and how this might have happened. See the **Appendix to Evolution** for a detailed explanation of these principles.

(Note: Although there exists one explanation as to how something could have come from nothing (out of the negative vacuum during the inflationary period according to the inflationary model of the Big Bang), nevertheless this is pure conjecture and is not adhered to by most scientists. It is, in any case, much less likely than the explanation that G-d created the world. If He created the world, then He must exist.)

b - Matter is Energy/Fields

At the beginning of the twentieth century, we began to realize that matter is not as solid as it once seemed. All matter is atoms which is really a nucleus with electrons spinning around it. In between those electrons is just empty space (comprised of force fields) and since the electrons are tiny, only a fraction of matter is really solid.

The fact that matter is really not solid was taken a step further when Einstein reduced the idea that matter is really energy and energy really matter to the simple formula: E=mc²

"The fact that energy can be converted into matter suggests that the universe began without any matter and that all the material we see now was generated from the energy of the Big Bang." Since we perceive energy as being more spiritual than matter, it now becomes easier to understand how a material universe could have come from a non-material source. This is not only consistent with belief in G-d as the Creator of all things; but also with the whole system of השתלשלות, the devolvement of forces from higher universes (עולמות) etc. to lower ones, until they finally express themselves in our physical world (עולם המעשה).

Another Twentieth Century discovery which makes it easier to perceive of matter as originating from a Higher Source is the Theory of Fields. Every particle produces a force field around it. However, some scientists have taken this idea further. Since all we can say about any particle is that it probably exists within a certain range and is therefore really more a shimmering smear or cloud rather than a localized point, it may be that matter ultimately is just a reflection of existing fields; i.e. matter simply reflects where the force fields are strongest.

One additional concept on these lines is the <u>concept of waves</u>. Originally photons and electrons were regarded as particles, but then (even before the discovery of fields) they were found to act sometimes like waves (which are simply packets of energy). Today, they are regarded as both particles and waves.²

¹ Superforce, pg. 19

² See further **Appendix E i - The Disappearance of Matter** for further details relating to this issue. Here is how Gerald Schroeder, in an article, described the matter: In 1923, almost a decade after Einstein published his relativity theory (no longer a theory, of course: now it is a law), the French physicist Louis de Broglie introduced an idea that was even more bizarre in it's assertions than Einstein's claim that matter really was a form of energy. De Broglie claimed that all matter has related to it a wave length and a frequency of that wave, a certain number of waves cycles per second. Not only had humanity learned that matter was not matter,

c - Probability

we now had to believe that everything is a wave. Everything- you and I included. Seventy years of experience have sustained both Einstein's and de Broglie's preposterous, counterintuitive claims.

The floor upon which you stand and the bedrock that supports 'a skyscraper are 99.999% empty space. What we perceive as solid matter is actually de Broglie's waves separated by open space, made imperme-able by invisible, immaterial fields of force that somehow pervade the space. The world simply is not as it seems. A superficial reading of nature finds a differentiation and disparate entities- stars and stones and bottled water in and even life and death. Reading that same mature at a deeper level reveals that it's all a manifestation of a single underlying unity. I'm on our balcony. The afternoon Jerusalem sum is filtering through the yellow-green finger leaves a eucalyptus tree planted a century ago to mark the property line. De Broglie tells me that leaves and the light are one. Not poetically- though that also- but physically, they are one.

It took humanity millennia before an Einstein discovered that, as bizarre as it may seem, matter is actually condensed energy. It may take a while longer for us to discover that there is some non-thing even more fundamental than energy that forms the basis of energy. In the words of John Archibald Wheeler, the renown former president of the American Physical Society, recipient of the Einstein Award and Princeton professor of physics, underlying all existence is an idea, the "bit" of information that gives rise to the "it" of matter.

The substructure of all existence, we suddenly realize, is totally ethereal, an idea, wisdom. Or in Hebrew emet - an all encompassing reality. Emet is the ultimate building block from which all we see and feel is constructed. Just as the substructure of all matter is something as ethereal as energy, as per Einstein's fantastic insight, so, the primary substructure of energy is still more elusive. Existence is the of an idea, expression an consciousness made tangible. We are the idea of G-d.

If we can discover that idea, we will have ascertained not only the basis for the unity that underlies all existence, but most important, the source of that unity.

Up until the twentieth century, scientists thought the world to be completely deterministic, i.e. every effect has a clear cause which in turn is the effect of a previous cause, and so on ad infinitum. As expressed by the nineteenth century Frenchman, Laplace, if we could know everything that had happened in the world until now, we could predict everything that would happen in the world from now on. The fact that we cannot do this, so it was believed, is a function of the impossibility of our knowing all the variables, a technical problem, rather than something fundamental. This made belief in השגחת הבורא more difficult. For, if everything is predetermined, what place is there for Providence to interfere with the

But, with the introduction of quantum physics, probability replaces certainty as the accepted idea in science. We can no longer know for sure what reality is; for example, we can no longer say where an atom is. What we can know are the various options of where it might be and the likelihood (probability) that it indeed might be there. This is not just because we do not have good measuring instruments, or because our measuring instruments are somehow faulty. This is because uncertainty is actually built into the universe¹.

Heisenberg's famous Uncertainty Principle (we can know either the position of an electron or its speed, but not both at the same time) was a precursor to this. If all we can say about something is that it exists as a probability, then matter itself is not as solid as we think it is².

not really have substance, only mathematical

form and therefore do not have the quality of

being but only a possibility of being or a

tendency for being. [Physics and Philosophy,

SCIENCE: Page 32

p.60.].

See further Appendix E ii - Uncertainty where we discuss three levels of uncertainty.

² Heisenberg went on to say that particles do

When the universe was considered to be completely predictable, as scientists thought for thousands of years, there seemed to be no place for G-d's Divine Providence. Perhaps G-d created the world and then withdrew. Today, remarkably, with the collapse of the scientific world of certainty, there is no longer a contradiction between science and G-d's Providence. The laws of science only represent the range of options which G-d normally uses to run his world. Which specific option He chooses, when he chooses to use the natural order, cannot be pre-determined.

The sane is true of our freedom of choice. If the world is pre-determined, then our choices are an illusion. But if the world is indeterminate, then there is place for choice. This idea needs to be combined with the next idea, the observer-centered universe, to understand more fully how deeply modern science considers the power of our choices.

d - Observer Centered Universe

Α fascinating experiment in interference was first performed by Earnest Young in the seventeenth century. Young sent a band of light through a screen which had two slits onto a second screen. This second screen showed a series of dark and light bands. The dark bands show where two bands of light woven had interfered with each other, arriving at the screen out of step. The light bands showed just the opposite, i.e where two bands of light reinforced each other. This can only happen if two sets of light are going through both slits simultaneously. But the same results are found even where the light is sent only one photon at a time. The only explanation for this is that each photon must be going through both slits at the same time!

More amazingly, if someone were to try to measure which slit the photon was going through, the photon landed out going through whichever slit was measured. In some way, the measuring of the slit causes the photon to go through that slit, and that slit only. This led scientists to realize that observation actually causes a change in matter.

Many scientists claim that it is the mind itself which causes this change. The fact that I choose to observe at one point or the other, 'collapses' the particle out of its previous state and cause it to go through this hole and not both holes or the other hole exclusively. This not only opened the way for belief in freedom of choice, a fundamental tenet of Judaism, but also to the idea that our choices actually shape the universe, a very Jewish idea. The term, an observer centered universe, was coined¹.

e - Punctuated Theory of Evolution

Stephen Jay Gould and Niles Eldridge developed this theory, more accurately

¹ Filiz Peach quotes leading physicist David Deutsch in Philosophy *Now*, (December 2000/January 2001) as saying the following:

The arguments that humans don't have a fundamental role in the scheme of things, which used to seem so self-evidently true. have all fallen away. I mean, it is no longer true that human beings are necessarily destined to have a negligible effect on physical events, because there is the possibility that humans will spread and colonize the galaxy. If they do, they will necessarily have to affect its physical constitution in some ways. It is no longer true that the fundamental quantities of nature - forces, energies, pressures - are independent of anything that humans do, because the creation of knowledge (or 'adaptation' or 'evolution' and so on) now has to be understood as one of the fundamental processes in nature; that is they are fundamental in the sense that one needs to understand them in order to understand the universe in a fundamental way. So, in this and other ways, 'human' quantities - human considerations, human affairs and so on - are fundamental after all.

known as the Theory of Punctuated Equilibria, to explain the fact that after more than a century of looking, the missing fossil record had still not been found. Although the theory is more a classic modification of Darwinian evolution than an overthrowing of it, there is no question that their approach, only developed over the last 30 years, goes a long way to begin the reconciliation of Judaism with evolution. For example, Gould and Eldridge concluded that the missing fossil record does not exist. Species did not develop gradually but rather, after periods of rapid development, emerged relatively suddenly.

It should be noted that modern evolutionary theory² is alive and well. It is true that evolution may prove one day to be bunk, but in recent years it has probably become a stronger rather than a weaker theory, in the eyes of most evolutionists. Rather than being overthrown, we suggest that evolutionary theory will gradually move closer to Judaism. Punctuated theory of Evolution is a step in the right direction.

f - Microbiology

Evolution depended on the belief that changes emerged gradually, with each intermediate change being functional in This depended turn. belief on understanding that organisms relatively simple. But the relatively new area of microbiology showed that each organism, in fact each part of each organism, is hugely complex. Moreover, it is irreducibly complex, i.e. no part of the complexity can be removed and still have the mechanism function³. This does not allow for the concept of intermediate

¹ See **Evolution: Chapter D i** for an in depth discussion.

³ Michael Behe, *Darwin's Black Box*

forms, and points strongly in the direction of Design.⁴

g - Archaeology

Besides the renegade group belonging to the Copenhagen school of archeology, arecheologists today accept the historical accuracy of the Old Testament⁵. The customs, towns, etc. which are described in the Bible, fit exactly with those which existed at the time claimed by the Bible. Moreover, those towns and customs did not exist at the time when the higher critical theories claim that various parts of the Bible were written. Nor could the so called authors of the Bible, completely without the aid of modern archeology, have known about those customs in such detail unless they lived in the actual era described.

h – Supersymmetry⁶

There are four basic forces in the universe - the strong and the weak forces, gravity and electromagnetism. Three of these forces operate at a sub-atomic level while the fourth, gravity operates at a macro level, i.e. from the size of an atom up. Many physicists regard their biggest challenge today to be the combining of these four forces into one. They believe

See **Evolution Chapter B and Appendices A-M** for in depth discussion.

² Known as the synthetic theory of evolution

⁴ Michael Behe sees his approach as a challenge to synthetic evolution, and much ink has been spilled trying to show that his theory is wrong.

⁵ This does not mean that they have proven that G-d gave the Torah. Moreover, there are a lot of earlier eras where no archeological information is currently available. But, wherever evidence has existed, it has supported the dates, places and unfolding of the historical events as described in the Chumash.

רמב״ן בראשית א:א – וכבר נודע כי היסודות הארבע 6 הם אחת

that, up until a short while after the Big Bang, these four forces were in fact one force and that they later divided into their present state when the universe rapidly cooled. At very high temperatures, these forces ought to combine once again.

There was no scientific evidence or intrinsic reason for scientists to believe that the world should comprise of one force rather than four. Yet pursuit of this project has involved tens of thousands of scientists for decades, at a cost of tens of billions of dollars. The explanation for their search is that scientists "believe" that ultimately the world is a place of great unity. This is essentially a religious belief, though it is also held by scientists who claim not to believe in G-d¹. Scientists also believe that the more simple or beautiful (mathematical speaking) a theory, or the more true it will prove to be.²

Scientists have thus far managed to combine the electromagnetic force with the weak force (called the electroweak force) and they have the basic mathematics to show that these are in turn combined with the strong force (called GUT - Grand Unified Theory). They are now working to show that these three force in turn are combined with gravity. This they call TOE - a Theory Of Everything. This is regarded by some as the last, great frontier in science.³ All of this supports the idea of a One G-d who is the unifying source behind all reality. (This idea was in stark contrast to the evolutionists idea of a world of chance conflict.)

Timothy Ferris (author of The Red Limit - The Search for the Edge of the Universe, Bantam, 1981) wrote, produced and narrated a PBS science special: "The Creation of the Universe.": The search for, and the belief in the possibility of finding, a unified field theory "testifies to the triumph of the old idea that all creation might be ruled by a single elegantly beautiful principle."

This idea reflect not just a growing compatibility between Judaism science. Rather, it points to the fact that the Monotheistic idea is what facilitated the scientific study of the universe to begin with. Ferris states: "Religion and science are sometimes depicted as if they were opponents, but science owes a lot to religion. Modern science began with the rediscovery, in the Renaissance, of the old Greek idea that nature is rationally from intelligible. But science beginning incorporated another idea, equally important, that the universe really is a universe, a single system ruled by a single set of laws. And science got that idea from the belief in one G-d.

"The founders of modern science --Kepler and Copernicus, Isaac Newton and even Galileo, for all of his troubles with the church -- were, by and large, profoundly religious men.

"I'm not saying that you have to believe in God in order to do science. Atheists and agnostics have won Nobel Prizes, as have Christians and Jews, and Hindus, Muslims and Buddhists. But modern scientific research, especially unified theory, testifies to the triumph of the old idea that all creation might be ruled by a single and elegantly beautiful principle" (PBS science special: "The Creation of the Universe).

i - Theory of Relativity

¹ There are no clear statistics on how many scientists believe in G-d. However, there is no reason to believe that they are more or less secular than the broader population. This means that at least 70% would believe in G-d, or a higher percentage, depending on what questions get asked.

² See **E** below where we talk of these beliefs of scientists in greater detail.

³ See **Appendix B v** where we discuss the attempt to combine the four forces in greater detail.

Einstein's Theory of Relativity showed that time and space exist together as the four dimensions of space-time (three dimensions of space and one of time).

The measure of time, like the measure of space now became relative to the position and speed of the person measuring it. Two things slowed down time - gravity and speed (momentum). The greater the gravity exerted on someone, the more time slowed down. So too, the faster a person moved, the more time would slow down (as measured by that person).

Judaism, in contrast to the accepted wisdom for centuries, stated that time was a created entity and therefore was not an absolute value. The agreement of science, finally, with this ancient concept meant that issues of the age of the universe now became much easier to resolve.¹

j - Recognition of Limitations

Most scientists realize that the quantum physics that has emerged from the beginning of the century is not fully comprehensible to the human mind. (This is not to say that scientists don't think that they can discover all the secrets of the universe. What it does mean is that what they already "know" to be true cannot be fully grasped by humans.)

Thus the famous physicist Richard Feynman:

"Do not keep on saying to yourself, if you can possibly avoid it, 'How can it possibly be like that?' because you will go down the drain into a blind alley from which no one has yet escaped. Nobody knows how it can be like that!"²

k - Anthropic Principle

The anthropic principle means that the world shows signs of design, implying that there was a Designer. It was only in the last few decades that it became apparent that the universe is very exactly set up to accommodate life as we know it. A slight change in any of a number of conditions would have rendered this life untenable. What makes this argument so impressive is the accumulation of all the variables being there in exactly the proportion necessary the lack of any one of which would render life impossible.

This has led many leading scientists to claim that the world was "designed" for life (e.g. Ernest Sternglass) even if they are careful not to say that G-d was behind that design.

This includes energy levels of the carbon atom; the rate at which the universe is expanding; the four dimensions of space-time, the nature of water, carbon, DNA, proteins, even the exact distance between stars in our galaxy.

These arguments are not, of course absolute proof that G-d made the world. We could always say that all of this is only by chance. Nevertheless, as more and more exact conditions emerge, this argument does become increasingly more powerful. evolutionists Even hardcore increasingly subscribing to the anthropic principle. One such person is Conway evolutionary Morris, professor of paleobiology University at the Cambridge and one of the leading evolutionists in his field. In his book, The Crucible of Creation: The Burgess Shale and the Rise of Animals (Oxford University Press, 1998), he argues that if the tape of life were rerun from the Cambrian time, we would get almost exactly the same outcome as we have today. "I believe it is necessary to argue that within certain limits the outcome of evolutionary processes might be rather predictable." And this for a theory which

¹ See **Appendix F** for a detailed description of relativity.

² (In Heinz Pagels, *The Cosmic Code*)

started out saying that everything is a function of random, chance events!

One variation of the anthropic principle is the fact that the world is comprehensible at all. The fact that there are laws at all, that the laws are as they are, that they coincide so exactly with abstract mathematics - all of these things cannot be explained by science itself. They precede science and allow science to take place, they demand an independent explanation.

But in the end, the issue is not whether we can come up with a scientific explanation for what took place. The fact that all these factors are so precise and perfect for the world we need, support the fact that this was a planned and guided event; the fact that this plan followed principles, intelligible to us up to a point, is only to be expected from what we know of how the Almighty made His world.

There are other related ideas to the anthropic principle. In *The Cosmic Blueprint*, Paul Davies writes:

"The universe has never ceased to be creative. Cosmologists now believe that immediately following the Big Bang the universe was in an essentially featureless state, and that all structure and complexity which we see today somehow emerged afterwards. Evidently physical processes exist that can turn a void - or something close to it - into stars, planets, crystals, clouds and people.

"What is the source of this astonishing power? ...

"There exist self-organizing principles in every branch of science. ...

"Many scientists would reject the idea of a cosmic blueprint as too mystical, because it implies that the universe has a purpose and is the product of a metaphysical designer. Such beliefs have been taboo for a long time among scientists. Perhaps the apparent unity of the universe is merely an anthropocentric projection. Or maybe the universe behaves as if it is implementing the design of a

blueprint, but nevertheless is still evolving in blind conformity with purposeless laws?" (pp. 1-8)

Besides there are yet other components fine-tuned to exactitude which cannot be accounted for by any one model. For example, "had gravity been only slightly stronger, stars would burn through their nuclear fuel in less than a year, life would never evolve, much less settle in. Had the strong force that holds the nucleus together been only slightly weaker, stars could never have formed. So far no theory is even close to explaining why physical laws exist, much less why they take the form they do. Standard Big-Bang theory essentially explains the propitious universe this way: "Well, we got lucky." (U.S. News & World Report, July 20, 1998)

Of course, it is never possible to prove that G-d created the world beyond any doubt. It is always possible to come up with some theory, however weird, which seemingly accounts for the phenomena being presented. The issue is not whether it is possible to explain the phenomena in a way which excludes G-d; rather the issue is what, on balance is the most probable explanation. In the above article the following scenario was presented:

"There is, however, a way in which purely chance-based physical processes might have resulted in the present user-friendly firmament. If universes are created all the time, this would greatly improve the statistical outlook of a firmament such as ours being born. This is the idea of the "multiverse" and it is rapidly gaining backing within the scientific community."

"The multiverse notion rises like this: Suppose it's true that, say, black holes are what came before the Big Bang. Since our universe has black holes, couldn't some of them be spawning new firmaments in other dimensions? The result might be an overarching cosmic structure far larger than anything we can see - a multiverse."

Deep in the past on... chance reigned, and many heavens were born with physical laws adverse to life: they collapsed back on themselves or diffused into vapor and were never heard from again. But those universes that were born with physical laws familiar to us were also the ones able to make black holes: that allowed them to trigger "daughter" universes. Over time, a fantastically large and complex multiverse resulted, with most parts of the cosmos having physical laws that allow life-natural selection functioning on a cosmic scale."

"But ... so far there is no evidence other universes or dimensions exist."

The article provides several alternative explanations, all of them equally speculative. 1

Diving Nature's Plan By Thomas Hayden

Believing in G-d us certainly not necessary to understand biological evolution. But for Conway Morris, one of the foremost paleontologists of his time, the world becomes a richer and more meaningful place if we do. Though he is skeptical about finding advanced life elsewhere, should we someday encounter intelligent aliens, Conway Morris says, "in all probability they will very much like us."

Biologists have overlooked the significance of evolutionary convergence. That's the phenomenon where by wildly different organisms independently arrive at the same "solutions" to life's challenges: e.g. the camera-type eyes found in both mollusks (squid and octopuses) and vertebrates (you, your dog, and your goldfish).

¹ (See Appendix A - The Big Bang v-What happened before the Big Bang? for further discussion on this issue. For a full discussion of the anthropic principle, see the **Proofs** booklet.)

The repeated emergence of everything from legs and wings to intelligence, social behavior, and even play, he argues, shows that biology has a limited number of solutions to the problems that organisms face-feeding themselves, finding mates, sensing their environment. That suggests that once life originates, evolution proceeds in repeated, predictable ways, from simple forms to complex, for example. "Evolution has trajectories," he writes, "and progress is not some noxious by product of the terminally optimistic, but simply part of our reality."

More radically, even those characteristics we consider uniquely human-large brains, culture, sentienceshow up in other lineages, all part of "humanness" appear to be inherent in biology. "In a very real way, humanity was inevitable." The notion of "inevitable humans in a lonely universe" helps restore place at the center of humanity's "creation." The fact that we descended from apes rather than angles- "does not belittle us."

1 - Religious scientists

Newton was an intensely religious person. After his time, however, it became exceedingly unpopular to be a religious scientist. Darwin, in particular, put the lid on this trend at the end of the nineteenth century. However, most of the great physicists of the twentieth century believed in G-d and today there is an increasing awareness amongst almost all scientists (except for some of the leading evolutionists, notably Richard Dawkins and Stephen J Gould) that science and religion are indeed not mutually exclusive. See **Appendix G I** where we have brought a list of leading 20th Century scientists and their religious beliefs.

(It should be pointed out, however, that the type of belief which many scientists have/had about G-d is often quite immature.)

Recently there has been a great movement in the U.S.A. bent on reconciling science with religion. In 1999, *Newsweek, Time, U.S. News and World Report* all ran articles touting the new reconciliation. (*Newsweek* made it a cover story, *Science Finds G-d.*) U.S. higher education now boasts 1,000 courses for credit on science and faith. The Templeton Foundation has sponsored many conferences and lectures on the subject.¹

ii-Living the contradiction

Although the contradictions between Judaism and science are decreasing, some do remain. However, we do not have to feel the need to resolve these problems immediately. Science is in constant progress, theories change all the time. Therefore, we can wait, in the anticipation that in the future, science will continue to move closer to Judaism as it has up until now and the remaining contradictions will be resolved. In the mean time, it is not a problem living the contradiction.

iii - Science itself Accommodates Contradictions

Scientists themselves understand this approach. Many contradictions exist within science, yet the scientists are able to live with these contradictions²:

¹ As reported in *Scientific American*, September, 1999, pg. 79

Progress would do much better to glorify problems than theories. It is problems that are inherently wonderful; solutions are merely useful. I even sometimes say, only half jokingly, that theories ought to be renamed

This is expressed in three ways:

- a) Scientists use <u>contradictory</u> theories knowing that they both cannot be true in their present form
- b) Scientists often live with competing theories for the same phenomena.
- c) In general scientists accept that science is in constant progress and not in its final form.

a - Contradictory Theories

An example is the **Theory Of Relativity** & the **Theory of Quantum Physics**. These are the two major pillars on which physics rests today. Relativity deals with the world at a macro level and includes the theory of gravity; quantum physics describes the micro, subatomic world. These two theories contradict each otherin their current form they cannot both be true³. Yet, separately, scientists do deal with each one as if it is absolutely true.

For an explanation of why quantum theory and relativity contradict, see **Appendix I** ii.

'misconceptions', and that progress consists of moving from one misconception to a preferable misconception. That is, from a misconception that contains a great deal of falsehood to one that contains less falsehood. Quantum theory radicalizes our assumptions about the relationship between observer and observed but pretty much buys into Newton's ideas of space and time. General relativity changes our notions of space and time but accepts Newton's view of observer and observed. This situation is deemed unacceptable by most physicists, and the race is on to find a unifying theory of quantum gravity, sometimes called a Theory of Everything. The idea is that ultimately everything, space and time, like matter and energy, come in quantized, indivisible units and that relationships, rather than things, are the fundamental elements of reality

² Filiz Peach wrote the following article in Philosophy *Now*, December 2000/January 2001. *David Deutsch*:

b-Competing theories

Many areas of science have not only two, but sometimes ten or fifteen competing theories, each believed by some and not other scientists. A few of the hundreds of such areas that exist are:

1 - Dead Sea Scrolls

Within a short period after the discovery of the Dead sea Scrolls there were ten theories suggesting who wrote these scrolls, under what conditions and why. Some say that the Essenes wrote these scrolls, based on a fortress occupied by the Essenes nearby and other evidence. Others dispute this. Even those who agree that it was the Essenes dispute who they were. Were they precursors to the Christians, at least ideologically, or were they simply an isolated sect that died out?

2 - Dark Matter

There are many indications that the universe ought to have a lot more matter than we can actually see. Perhaps as much as 90% of the universe is invisible or dark matter. Scientists have umpteen theories as to what this matter might comprise. Some say that the missing matter is made up of neutrinos, provided that these have slight mass. (Recent experiments in Japan indicate that they do.) Others say that the missing mass is not mass at all - rather it is a fifth force, yet to be identified. Many other theories abound.

3 – Consciousness

Scientists do not know what causes consciousness. Some are convinced that we will ultimately find a reductionist, chemical explanation for consciousness. Others say that the solution lies in better understanding non-linear, complex

phenomena and will be explained by the emerging field of chaos theory.

4 - The Ultimate Force

In the attempt to combine the four forces into one force, there are numerous explanations as to what that ultimate force is and how matter might express itself within that force. Some say that matter ultimately expresses itself as strings of energy (for some these are super-strings); others say that the basic unit is not matter or even a force in a normal sense - it is a basic law of symmetries which determine how the world expresses itself.

5 – Superconductivity

Superconductivity occurs when an electric current passes through a substance with almost no resistance. Traditionally, these substances had to be very cold, way below freezing for superconductivity to happen. But then superconductivity was found in certain ceramics higher at much temperatures. The traditional way of explaining why superconductivity took place was that at low temperatures the electrons within the substance aligned themselves in straight rows, but this explanation could not explain super conductivity at higher temperatures and had to be abandoned.

6 - Birds from Dinosaurs

Scientists are having an ongoing dispute as to the origin of dinosaurs. Most paleontologists believe that birds derived from dinosaurs. But a vociferous minority dispute this, bringing proofs of their own. (See **Evolution**)

7 - The Standard Model

The Standard Model of matter, the accepted theory of how matter and forces operate in the world, predicts that matter and antimatter should operate in the same way. Yet the fact that everything we can see in the universe, including the stars and the asteroids, are made up of matter and not antimatter, is a vital clue that all is not well with the Standard Model.

addition. physicists do understand the mechanisms that determine the model's 18 parameters. For the theory to describe the world as we know it, some of those parameters must be very finely tuned, and no one knows why those values would apply. More fundamentally, we do not understand why the model would describe nature at all. Why, for instance, should there be exactly three generations of leptons and quarks, no more and no less? Finally, aspects of the theory that involve the Higgs particle are all untested, as of yet (Scientific American, Oct 1998, pg. 50-51).

All this means that the Standard Model is going to have to be significantly remodeled or overturned altogether. Yet until this happens, the Standard Model, with all its warts, will continue to be used it is, for now, the best theory on the market.

c-Science is in constant progress

The Philosophers' Magazine/ 1st quarter 2003:

On 27 April 1900, Lord Kelvin, president of the Royal Society, addressed the Royal Institution and referred to "the beauty and clearness of the dynamical theory".

1900 was the year in which flash photograph was invented and speech was first transmitted by radio. Nikola Tesla's inventions in alternating current allowed the city of Buffalo to receive electrical power generated from Niagara Falls.

Count von Zeppelin constructed an airship. The Paris metro opened and London saw its first motor bus. Edison's Vitascope and the magnetic recording of sound heralded the age of the movies. During the two previous years the Curies had discovered radium and JJ Thompson the electron. Von Linde had liquefied air and aspirin had been invented.

In 1900 the United States, backed by its paper currency with gold, clear evidence of economic prosperity and stability ahead. The same year also saw a link between Britain's Trades Union Congress and the Independent Labour Party, a move that would eventually lead to the establishment of the welfare state. Oueen Victoria, had become known as "the Grandmother of Europe" since her grandchildren were now part of the monarchy across Europe and into Russia. For this reason diplomats believed there would never be a war within Europe. After all, the previous year had seen the world's first peace conference at The Hague with the establishment of an International Court to arbitrate in disputes between nations and to outlaw various forms of warfare.

In 1900 the young Bertrand Russell, heard Guiseppe Peano speak at a conference in Paris. The lecture so inspired him that he decided to devote his life's work to the discovery of certainty in mathematics and philosophy, the former goal being an extension of David Hilbert's great plan to axiomatise and demonstrate that mathematics is totally consistent and complete.

Yet if, for so many at the time, 1900 symbolized the culmination of an age of certainty, it was also a date with a certain irony associated with it, for in this same year Max Planck proposed the existence of the quantum of energy and Henri Poincare's study of the movement of the solar system sowed the seeds for what would later become chaos theory.

"Two years ago I would have called this baloney," molecular biologist Rual Cano on news that paleontologists in Montana are working to analyze DNA from blood cells found in a tyrannosaurus fossil. (*Newsweek* July 12, '93.)

Doctors are told at medical school that half of what they will learn is wrong -unfortunately, we don't know which half. Virtually all of our medical therapeutic options are being questioned, evaluated and re-evaluated by researchers across the globe. For example, a few years ago it was taught that the use of beta blockers, a class of powerful medicines for the treatment of high blood pressure, could endanger the life of a patient with heart failure. The thinking was that beta blockers, which slow the heart rate, could make an already poorly performing heart perform even worse. Now, less than eight years later, the opposite is thought to be true: beta blockers reduce the risk of death in patients who suffer heart failure. By slowing the heart, reducing its workload, a performing heart improves. poorly Arthroscopic knee surgery osteoarthritis and postmenopausal hormone replacement for the prevention of heart disease have lost their standing as effective therapies. Certain techniques discarded long ago can serve a new purpose. Leeches, for example, are now used on some patients to treat the pain of arthritis. An irregular heartbeat was treated by medicines which restored normal rhythm but often made one tired. But a recent study (2003) showed that patients who were allowed to remain in an irregular rhythm did just as well as patients who took medicine to control the rhythm, as long as their heart rates -- the number of beats per minute -- were controlled¹.

About 3 decades ago, astronomers discovered dark matter. But they didn't and do not until this day, understand whether the dark matter was distributed

¹ Based on an article by Lisa Sanders in the NY Times, March, 03.

the way stars and galaxies are. They had no clue to the whereabouts of most of the universe. Then scientists decided that a good deal of dark matter did not exist after all. What they were really seeing was dark energy. And they still admitted that they had no idea what dark matter might be made of. Some of it may be ordinary matter, like rocks and dead stars. But most of it must be more exotic stuff -- perhaps elementary particles left over from the Big Bang. There is good reason to believe that, what is being proposed as a reality, dark matter, is so little understood that it may one day turn out to be all one big mistake.

Many proposals that scientists make, do not in fact have enough evidence to give them the status of theories. These are instead called models. For example, the Standard Model, describes how matter is made up and the forces that combine them. Most scientists use the Standard Model as if, in fact, it has already been proven. Indeed a lot of what scientists have discovered has confirmed the Standard Model. But all are open to the idea that it may one day be overthrown.

Dennis Flanagan, a former editor of *Scientific American* when describing the unfolding of the universe states: "My account, however, does not depart from what most scientists believe is <u>probably</u> true. Still what is probably true today may not quite be the same as what is probably true tomorrow. The tale too evolves." (*Flanagan's Version*, pg. 67)

Scientists themselves have many fundamental questions about the nature of science. Do scientists invent the world or discover it? What is the basis for the extraordinary success of mathematics as a language of invention /discovery? Does nature indeed have fundamental patterns of order—a bottom floor, simple and firm, with no more steps descending—or is nature an endless house of mirrors, a multidimensional maze of illusions and self-deceptions? What is reality? Is there such a thing? How does one get from the

symmetries of subatomic particles to the messiness of the world, from unbending equations to the diversity of the rain forest?

Many physicists of the late 20th century hoped to find a pattern of mathematical order so self-evidently true that G-d would have had no choice in making the universe. In the first instant of the big bang, all was symmetry, a hidden transcendent perfection. In the cooling of the universe after the primal explosion, the symmetries had broken, resulting in an apparent chaos of particles and forces.

But as George Johnson (in his biography of Murray Gell-Mann) puts it: "But when the experiments required so many layers of interpretation, how could the physicists know when they were reading too much into the lines and squiggles, seeing what their brains were primed to see, like pictures in the clouds? Were really discoveries, these inventions?" Whatever philosophical inclinations, Johnson says, it is not hard to be in awe of what Gell-Mann and his colleagues accomplished, the socalled Standard Model describing the particles and forces of nature. Discovery or invention, it was a work of high art."

The many things scientists do not know or cannot understand:

All the competing theories which we described in **b** above are competing just because scientists do not have a full grasp of these areas.

Applied science, the area of science which gives us the practical benefits of science, also suffers from many areas where it is currently stuck or making little progress:

"For example it once seemed inevitable that physicist's knowledge of nuclear fusion - which gave us the hydrogen bomb - would also yield a clean, economical, boundless source of energy. For decades, fusion researchers have said: "Keep the money coming and in twenty years we will give you energy too cheap to meter." ... [But] even the most optimistic researchers today predict that it will take at least 50 years to build economically viable fusion reactors. Realists acknowledge that fusion energy is a dream that may never be fulfilled: The technical economic and political obstacles are simply too great to overcome.

"Turning to biology ... [there is the problem of cancer. Since President Nixon officially declared "war on cancer" in 1971, the U.S. has spent some \$30 billion on research, but cancer mortality rates have actually risen by 6 percent since then. Treatments have also changed very little. Physicians still cut the cancer out with surgery, poison it with chemotherapy, and burn it with radiation. Maybe someday all our cancer research will yield a "cure" that renders cancer as obsolete as smallpox. Maybe not. Maybe cancer - and by extension mortality - is simply too complex a problem to solve." (In The End of Science, John Horgan, pg. 274, Broadway Books, 1996)

"One of the most perplexing areas of research today is the science of the mind - in particular how consciousness works: "The science of the mind has - in certain respects - become much more empirical and less speculative. ...[However] the reason psychologists, philosophers and others still engage in protracted debates over Freud's work is that no undeniably superior theory of or therapy for the mind - either psychological or pharmacological - has emerged to displace psychoanalysis once and for all." (ibid., pg. 275)¹

Unanswered Questions

Why does our universe contain its observed mix of ingredients? And how, from its dense beginnings, did it heave itself up to such a vast size? The answers will take us beyond the

¹ Scientific American, December 1999, Exploring Our Universe and Others, Martin Reese, P. 44

physics with which we are familiar and will require new insights into the nature of space and time. To truly understand the history of the universe, scientists must discover the profound links between the cosmic realm of the very large and the quantum world of the very small. *Missing Matter - Expansion*

It is embarrassing to admit, but astronomers still don't know what our universe is made of. The vast bulk of the matter is dark and unaccounted for. Astronomers are also unsure how much dark matter there is. The ultimate fate of our universe-whether it continues expanding indefinitely or eventually changes course and collapses to the so-called big crunch—depends on the total amount of dark matter and the gravity it exerts. Current data indicate that the universe contains only about 30 percent of the matter that would be needed to halt the expansion. (In cosmologists' jargon, omega-the ratio of observed density to the critical density-is 0.3.) The odds favoring perpetual growth have recently strengthened further: tantalizing observations of distant supernovae suggest that the expansion of the universe may be speeding up rather than slowing down. Some astronomers say the observations are evidence of and extra repulsive force that overwhelms gravity on cosmic scales—what Albert Einstein called the cosmological constant. The jury is still out on this issue, but if the existence of the repulsive force is confirmed, physicists will learn something radically new about the energy latent in empty space.

4 forces -1st second of the Big Bang

The great mystery for cosmologists is the series of events that occurred less than one millisecond after the big bang, when the universe was extraordinarily small, hot and dense. The fierce heat within stars, and in the early universe, guarantees that everything breaks down into its simplest constituents. However, the laws of physics with which we are familiar offer little firm guidance for explaining what happened during this critical period.

To unravel this mystery, cosmologists must first pin down-by improving and refining current observations-some of the characteristics of the universe when it was only one second old: its expansion rate, the size of its density fluctuations, and its proportions of ordinary atoms, dark matter and But to comprehend why our radiation. universe was set up this way, we must probe further back, to the very first fraction of a Such an effort will require microsecond. theoretical advances. Physicists must

Charles Petit¹: For generations they have expected to discover a few simple, elegant rules from which the cosmo's workings spring. But instead of becoming simpler, this new portrait of the universe is an ever more random – seemingly hodgepodge of apparently unconnected constants, particles, forces, and masses.

The last straw for noted physicist John Bahcall of the Institute for Advanced Study in Princeton was when a satellite called the Wilkinson Microwave Anisotropy Probe had plotted unprecedented detail, tiny temperature variations in the microwave background radiation that fills the sky. This fading flow of the big bang reveals our universe at about 370,000 years (less than a 10,000th of its current age) and holds clues to its exact age and mix of matter and energy (box, below).

"If I didn't have all these facts in front of me, and you came up with a universe like that, I'd either ask what you've been smoking or tell you to stop telling fairy tales." WMAP's data underscore the puzzles physicists find. One is the "hierarchy" problem of the immense disparity in forces. The gravitational push of an electron is less than a trillionth of their electromagnetic attraction. Why these forces are so vastly different is, to scientists, just plain weird.

Similarly, physicists have long known that there is no such thing as empty space. Even the vacuum boils with particles and antiparticles appearing and disappearing in subatomic quantum foam. That foam

discover a way to relate Einstein's theory of general relativity, which governs large-scale interactions in the cosmos, with the quantum principles that apply at very short distances. A unified theory would be needed to explain what happened in the first crucial moments after the big bang, when the entire world was squeezed into a space smaller than a single atom.

¹ The g-ds must be crazy in US News and World Report, '03

could generate "vacuum energy" like that dark energy astronomers have now detected. Trouble is, standard physics suggests that the vacuum energy, if it exists at all, should be incredibly larger than what is observed, by a factor of 1 followed by 55 zeros.

Then there is the "fine-tunning" problem. The universe appears marvelously constructed to produce stars, planets, and life. Scientists have calculated that if the force binding atomic nuclei were just 0.5 percent different, the processes that forge atoms inside stars would have failed to produce either carbon or oxygen - key ingredients for life. If gravity were only slightly stronger or weaker, stars like our sun could not have formed. Yet physicists see no reason why the constants of nature are set just so.

See Chapter D viii for a further listing of things the scientist doesn't know.

iv-The danger of trying to explain the חומש according to contemporary physics

There have been Sages in the past who have interpreted the חומש, using the contemporary knowledge of the time. (e.g. the תהו ובהו - מורה נבוכים etc. in terms of four elements of Aristotelian philosophy.)

e.g. to describe יומא נג נד which talks of the beginning of the world, in terms of the Big Bang. The danger is that, since science is ever changing, any such interpretation may become outdated. Therefore, although one may use contemporary terminology in translating the חומש (e.g. חומש Cosmic soup) one must be careful not to reduce the שוח to any contemporary scientific explanation.

The בראשית story was not described in scientific terminology because the תורה is not a scientific manual rather it teaches us how to lead moral and spiritual lives. This is not to say that the תורה is inconsistent

with the physical world and cannot, to some degree, also be understood at that level but that is not the primary message of the תורה Besides, the תורה needs to be understood on many levels simultaneously (פרדם), something scientific terminology could not accommodate. But there are other reasons why the תורה was not written as a science manual. Had the תורה been written in the language contemporary physics, we would have had to have waited until the twentieth century to understand it; and then only the physicist would have really appreciated what it was saying. More importantly, even this would have been wrong, since science will surely change its views on many subjects over time. There are obvious parallels between Judaism and science as we have seen.1

¹ David Hazony in Azure, Winter 1999 had the following to say:

First, there is the problem of employing science to understand the Bible. The fields of so-called "hard" science are as varied in their methodology and standards as in their subject matter, and while it is to be expected that the vast majority of scientists spend their careers under the paradigmatic umbrellas of the leading theories in their fields, this does not mean that an outsider looking in should necessarily take these theories seriously. inasmuch as they may bear on his beliefs or values. Put simply: As a layman, I am much more likely to alter radically my behavior on the basis of the latest developments in oncology than those in paleontology. The former, while by no means infallible, are based wide body of corroborated experimentation, and have been held to the test of practical implementation; the latter, even if highly regarded by the most ingenious of paleontologists, are based on such scant evidence, guesswork and fundamentally untestable hypotheses, that no serious thinker should entrust his or her religious beliefs to their graces.

When, for example, was the last time you encountered a brontosaurus? A brief visit to the children's section of a local bookstore will reveal that the entire retinue of dinosaurs most of us grew up knowing and loving have recently suffered a new extinction: Gone or forgotten are the stegosaurus, dimetrodons

and pterodactyls upon which an entire generation of museums, toys and picture books were built. Like a giant asteroid crashing down upon the earth, radical new works such as Robert T. Bakker's 1986 The Dinosaur Heresies have succeeded in shifting the most famous paradigm of paleontology: Dinosaurs, it now turns out, never really were the slow, stupid, cold-blooded reptiles they made themselves out to be. They were nimble, smart, warm-blooded and bird-like, probably a lot more like Spielberg's velociraptors than anything else. The trusty, timid brontosaurus is no more, supplanted by the "apatosaurus," a fearsome monster which roamed in packs, was athletic enough to be able to swim, and could vanquish its enemies by rearing up on its hind legs and thrusting the fullness of its thirty-three-ton body onto its adversary, or by whipping him with its fifty-footlong tail.

What is true for the stability of paleontology is all the more true when looking at the cosmos, whose basic bits of evidence are a lot less handy than fossils. Hypotheses about the origins of the universe frequently employ unproved or unprovable assumptions as basic theoretical building blocks. It is significant that the Big Bang is itself infamously unstable: As the cosmologist P. James E. Peebles (and a number of his colleagues) pointed out in the March 1998 issue of Scientific American, the Big Bang, although not yet at serious risk of being replaced by a competing theory, is beleaguered by basic "unresolved issues" (such as how the galaxies were formed), and will likely undergo fundamental revisions within the coming decades.

None of this is meant to imply that paleontologists or cosmologists are necessarily bad scientists; given the questions they are asking and the kind of data they have to work with, things could hardly be otherwise. What it does show is that anyone who takes the Bible seriously as an eternal source of wisdom should not dream of trying to understand it with the current scientific tools employed — tools which of necessity are prone to massive revision every few years if the scientists are doing their job right. ...

Nor has science proven all that useful even when applied directly to the task of biblical interpretation. For centuries, scientists and pseudo-scientists have offered solutions to textual problems in the Bible, without bringing us any closer to an understanding of the Bible's meaning. Whether it be the workings of an often hostile class of documentary hypothesists, or more sympathetic efforts to

To sum up, the scientist as the guest...wrote "Science has come around to what the תורה has stated however scientifically unorthodox it may have appeared in any one era.

The great astronomer Robert Jastrow: "is about to conquer the highest peak, as he pulls himself over the final rock, he is greeted by a band of theologians who have been sitting there for centuries". (*G-d and the Astronomers*)

"correlate" creation, the flood or the parting of the Red Sea with cosmology, paleontology and archaeology, these efforts all miss the point, skirting those far more difficult questions that stir the heart of the religious thinker: What point is the Bible trying to make? What are the spiritual or theological implications of these stories? What are the demands—whether of belief or action—that a proper understanding of the Bible makes of man? In science the religious thinker has never found, indeed can never find, the key to his understanding of the text.

A reading of the text which jibes with cosmology while being fully literal is therefore clear, simple and absurd: Are we seriously expected to believe that the author of Genesis would choose to begin the tale of the world's creation with a lesson in late-twentiethcentury cosmology? Is not the image of the author (divine or otherwise) composing a Creation story that is perfectly incomprehensible to his audience, chuckling to himself as millennia of biblical scholars try in vain to understand that which is not really understandable. until along paleontology, particle physics, relativity and Edwin Hubble to reveal the true meaning of the text—is that not [highly] improbable.

CHAPTER D: LIMITATIONS OF SCIENCE

- i- Science's Enormous Achievements
- ii- The Arrogance of Science
- iii-The physical world meaningless without the spiritual world
- iv-Each technical advance leads to new moral issues
 - a Cloning
 - **b** Triage
- v- Scientists unqualified to assess these issues
- vi-Could not produce a system of ethical living
 - a No ethics
 - b Inadequate world view
 - c No control of society
 - d Made things worse
 - e No feelings, purpose or values
- vii-Cannot, even in principle, gain a total grasp of knowledge
 - a Indeterminacy and Probability
 - **b** Chaos and Complexity

viii-Practical Limits

- a Conflict between Quantum Theory and Theory Of Relativity
- **b** Dark Matter
- c Migration of Birds
- d Annual Diet
- e Superconductivity
- f Shape of the Milky Way
- g How many basic elements can exist
- h How does the earth move internally
- ix-Logical Limits
- x- At certain point the physical world inaccessible
- xi-Therefore requires the תורה to illuminate
- xii-Messianic Era

CHAPTER D: LIMITATIONS OF SCIENCE

i - Science's Enormous Achievements

מדום as scientific leader:

"In the 6th century of the 6th millennium the gates of wisdom will open above and the wellsprings of wisdom below, and the world will prepare itself to enter the seventh millennium....

(Zohar, Vayera, 117 as quoted in Raphael Eisenberg, *A Matter of Return*, p. 5)

עשו 's argument with רבקה re: עשו (from עשר - the doer) is the master of industrial, scientific, material development.

יצחק - this needs to be incorporated into the Jewish people.

כלל - רבקה and therefore these developments will take place outside of the Jewish people, ultimately becoming a part of that which will challenge the Jewish people. (גלות אדום)

Science, in particular, twentieth century science, has changed our whole way of life. We live in houses that are heated and cooled, lit up at night and wired to alarm systems; we turn on taps and flush toilets; we drive cars, watch TV and surf the Internet; we buy in huge supermarkets and cook in microwaves; we use our credit cards and make electronic transfers; we use plastic and other synthetic materials as much as we use natural ones - indeed it is difficult to think of much of anything that we do which was not given to us by modern technology.

Percentage of homes with a flush toilet:

1900: 10% 1997: 98 %

Flush toilets, refrigerators, central heating and electricity—nonexistent or rare at the turn of the last century—are

now commonplace. Adjusting for inflation, middle-income households make more than twice what they did in 1929.

These are indeed important gains and the world is a better place because of them.

More than just saving us from going to the well for our water and using candles by night and donkeys by day, science, primarily through simple sanitation such as flushing toilets and purified running water, has given us a new lease on life itself. In the USA between 1900 and 1998, the life expectancy increased from 47 years to 78 years. The average person has 31 extra years with which to fulfill his life's task. Truly remarkable! Many whose lives were measured in minutes and hours would today live long and healthy lives. Infant mortality (below one year of age) in the USA declined from 100 per 1000 births (10%) in 1915 to 11 per 1000 (1.1%) in 1984. (Figures from Dennis Flanagan's Flanagan's Version, Vintage Press, pp. 26-28)

Horrible diseases, which over the centuries took hundreds of millions of lives are now under control. One of the ghastliest of them all, smallpox, was totally eradicated from the face of the earth. (ibid.)

The more scientifically advanced a country, the better its standard of living. In these countries, people eat better, have better sanitation, higher income and generally live more healthy, comfortable lives. If we believe in science, it is because we see that it works; not just by sending someone to outer space, but in tangible ways that improve our lives every minute of the day.

But what most of us fail to be aware of, is how science has changed our whole way of relating to the world. Even our daily speech has dramatically changed over the

last century. After the invention of electricity, for example, effective people became "dynamos", a thrill gave one a "charge" and personalities could become "overloaded" or "burnt out" 1.; and now we talk of a quantum leap.

Our whole way of relating to time changed dramatically. Up to the 1820's, a day was divided into 12 daylight hours, each day having a different measure of hour. It was American railroads, with their need for exact scheduling which imposed modern time on mankind. No one today can imagine how revolutionary such a change was. It engendered huge resistance at the time. Banks in Louisville, Kentucky stuck to sun time for another 30 years. A school board in an Ohio town decided to run the schools on Eastern Standard Time, in defiance of the city council which kept the rest of the town on sun time. A debtor in Boston reset his watch to the new eastern time and thereby missed his court appearance before a judge who stubbornly persisted in using local time and declared the man delinquent (the State Supreme Court overturned the decision).²

In just the past four decades, we have amassed more scientific knowledge than was generated in the previous 5,000 years. Indeed, 90 percent of all the scientists who ever lived are alive today, and they are using more powerful instruments than ever existed before³.

Zuckerman continues: Scientific information is now increasing twofold about every five years. Information doubles every 2 ½ years. New knowledge makes most technology obsolete in just five to seven years. Even computers are out of date in less than two years. Recently, IBM announced that it is going to build a supercomputer working 500 times faster than the fastest computer today.

"Moore's Law of computer power doubling every 18 months or so is now approaching a year. Rav Kurzweil, in his book *The Age of Spiritual Machines*, calculates that there have been 32 doublings since World War II and that the singularity point – the point at which total computational power will rise to levels so far beyond anything that we can imagine that it will appear nearly infinite and thus be indistinguishable from omnisciencemay be upon us as early as 2050. When that happens, the decade that follows will put the 100,000 years before it to shame⁴."

ii - The Arrogance of Science

But, more than that, in the 20th Century, science is not just another endeavor of the Western world - it is the defining characteristic of that civilization. The sciences in general, and theoretical physics and cosmology in particular are answering all the ancient questions of the philosophers: - where does life begin and end; when did the universe begin and when will it end; how is matter created and destroyed; what are the ultimate principles by which the universe runs?

The new role of the theoretical physicist:

¹ Electrifying America, David Nye, reviewed by Claude Fisher in Science, May 17, 1991

² Keeping Watch: A History of American Time, by Michael O'Malley, reviewed by Patricia Cline Cohen, in Science, May 17, 1991.

³ Mortimer B. Zuckerman, Dec. 27, 1999, U.S. News and World Report:

[&]quot;Blue gene" it is called, and its target speed is a thousand trillion calculations each second!

^{...}It took five months for the news of the discovery of the New World by Columbus to reach Spain. It took just 1.3 seconds for Neil Armstrong's historic step on the moon to reach millions of viewers through television.

^{...}In 1932, Albert Einstein concluded that there was not the slightest indication that nuclear energy would ever be obtainable. A decade and change later, Tom Watson, the chief of IBM' surveyed the potential world market for computers, pondered, and concluded that there was a demand "for about five."

⁴ Shemer's Last Law by Michael Shemer in *The Scientific American, 2002*

Above we explained how the physical world can embellish our appreciation of Hashem and the Torah, and that there is, in fact no intrinsic contradiction between the two

In this scheme of things, science contributes to our knowledge and well-being, and problems only arise when the scientist fails to realize his limitations¹.

The following is based on a book review by F. Gonzalez-Crussi in the NY Times of Atul Gawande's COMPLICATIONS: A Surgeon's Notes on an Imperfect Science: At a time when more and more American medicine is regarded as an industry, the uses and customs of industrial corporations are being deployed in the clinic. I once heard the impressive slogan "zero mistakes" ardently propagandized by a highly paid consultant at the hospital where I worked. On the one hand, the slogan reflected the commendable ethos of unflagging intolerance to mistakes; on the other, it undermined its own effectiveness by running counter to the categorical truth, vouched for by the experience of milleniums and confirmed by the foremost thinkers of every age, that human beings are fallible.

In Complications, Atul Gawande describes many things remain unexplained. Diseases come and go, often without apparent cause. Or a causal role is rashly attributed to factors that are purely coincidental. The same demonstrable abnormality shows up in some patients with excruciating symptoms while in other patients it courses unperceived. An epidemic of backache among physicians who formerly withstood endless hours stooping in the operating room may be related, Gawande suggests, to growing dissatisfaction with their profession.

Gawande writes. "Medicine's ground state is uncertainty. And wisdom -- for both patients and doctors -- is defined by how one copes with it."

We are given a glimpse of that mysterious, tragic condition, the sudden, unexplained death of infants (SIDS, or sudden infant death syndrome), for which in my own lifetime at least a dozen hypothetical explanations have been seriously entertained. As a pathologist, I thoroughly enjoyed the chapter named "Final Cut," in which Gawande, with admirable forthrightness, tells us that one important cause for the decline of the autopsy is hubris. Physicians today believe that with modern high-tech medical instrumentation no

However, because science has been used by Edom as its primary instrument of progress, as an alternative to the Torah, the paradigm of the scientist is often in conflict with the Torah.

Many scientists see anything which they cannot reduce to a purely physical explanation as a conflict to science. Thus Heinz R. Pagels writes:

"These two views of reality-the natural and the transcendental-are in evident and deep conflict. The mind, it seems, is transcendent to nature. Yet according to the natural sciences, that transcendent realm must be materially supported and as such is <u>subject to natural law</u>. Resolving this conflict is, and will remain, a primary intellectual challenge to our civilization for the next several centuries."

Recently Paul Davies, in The Cosmic Blueprint, has indicated that these principles permit the universe to be selforganizing in a dynamic and creative way and may even account for how it came to exist in the first place. The scientist, having for years claimed metaphysics as his own, is now on the verge of solving the universe's last great mysteries! As Davies puts it: "It may seem bizarre, but in my opinion science offers a surer path to G-d than religion." (G-d and the New P, pg. ix). Or Richard Dawkins, a University of Oxford biologist and proclaimed atheist puts it: "We're working on building up a

diagnosis can escape them, a stance that defies recent studies showing that 40 percent of the time an autopsy uncovers abnormalities not diagnosed during the patient's life, and one-third of these are of such magnitude that they would have modified the course of treatment, had they been known opportunely.

At a time when a hospital advertises with the phrase "where miracles happen"; when physicians claim, without blushing, to perform "cardiac resuscitation," letting people believe that they bring back Lazarus every day, candor like Gawande's deserves unreserved praise.

²The Dreams of Reason, pg. 12

complete view of the universe, which, if we succeed, will be a complete understanding of the universe and everything that's in it." (In N.Y. Science Times, June 30, 1998)

In 1988, the Harvard naturalist Edward Wilson published a book with the strange "Consilience: The Unity of Knowledge". In it he attempted to show the complete unity of all knowledge, in particular the knowledge of human affairs. under the umbrella of the scientific endeavor. Politics, economics, society, the individual and belief in G-d - all will only make ultimate sense when reduced to biology - genetics to be specific - and genetics will only ultimately make sense when reduced to physics. Only then will we be able to link all the insights of diverse fields into a coherent whole that will explain all of human behavior. Why do people love, and why are there wars; why do we dream and why do we have self-awareness; why are we greedy capitalists and why are we creative; why are we moral and why do we believe in Gd - all must yield to the might of consilience.

Wilson's ideas have yet to be welcomed as scientific mainstream- too much grandeur and not enough hard science to back it up. But what Wilson wants to do explicitly, has indeed already taken place, but without the conscious awareness of the human race as a whole. Science has, if not actually taken over all areas of knowledge, has at least defined and shaped them, setting the standards by which they will all be judged.

In an expression of Robert Jastrow's idea in *G-d and the Astronomers*, the scientist that gets to the top of the cliff to find the theologian already there will view the theologian as an extension of the cliff face which he is climbing. He must keep on climbing until he is sitting, as he sees it, on top of the theologian as well. Of course he is gracious to his cliff and he smiles kindly

down on his theologian as well: all are welcome in the ultimate scheme of things.

iii - The physical world meaningless without the spiritual world

But all of this is not a problem so much of science as it is of the scientist. Science itself, retains its need to be informed and made meaningful by spirituality.

The challenge of Judaism and science is not therefore about any intrinsic tension between the two. Rather it is about whether science can be made to be a morally and spiritually meaningful enterprise.

10 sayings of Creation = the physical content: science, medicine, relative to the חכמות חיצוניות are חכמות חיצוניות

10 commandments = the spiritual content = תורה

"In the study of cause and effect, the scientist emphasizes the effect, the Jew the cause. In the Jewish view, as long as scientists do not understand the underlying rationality, their understanding of any law is limited to that law's effects." (Michael Kaufman)

הסתכל באורייתא וברא עלמא means that He looked into the spiritual essence from which He derived the physical world, the outer garment.

Therefore:

- 1 The two are in harmony
- 2 The physical world is meaningless without the spiritual world.
- 3 More than that, the physical world would be destroyed without its spiritual content:

בראשית א:לא

¹פחד יצחק - חנוכה - מאמר ד' סעיף ד

רשייי: הוסיף הי בששי בגמר מעשה בראשית לומר שהתנה עמהם על מנת שיקבלו עליהם ישראל חמשה חומשי תורה. דייא יום הששי כולם <u>תלוים</u> ועומדים עד יום הששי הוא ששי בסיון המוכן למתן תורה

ירמיה לג:כה אם לא בריתי יומם ולילה חקות שמים וארץ לא שמתי

However, although it is science which needs Judaism and not the other way around, nevertheless, science <u>can</u> embellish Torah (See שוית: 3-57; רמב"ם)

iv - Technical advances lead to new moral issues

Two examples involving medical ethics:

a - Cloning

Cloning leads to the following issues (amongst others):

- Does the mother have to use her own nucleic genetic material; does the ova (egg cell) have to come from her?
- Who is the legal mother of the child?
- Is a clonee (the baby) a legal child of the cloner (the donor of the genetic material) or maybe the clonee is the sibling of the cloner?
- In either case it would mean that a child would have the equivalent of an identical twin as her mother (or as his father)?
- Under what conditions can this method be done if at all? Can it be used to improve the human race (clone a perfect genius) instead of infertility treatment? Can it be used by lesbians to provide themselves with children?

b - Triage

Triage (i.e. not enough medical resources or financing to go around) leads to some of the following issues:

Are we ever allowed to choose between two people (an old, demented person who probably won't live that long vs. a young, bright, motivated presidential candidate)? Can we decide not to apply hugely costly treatments like kidney transplants that effect only a few people and sap resources from the general well being of the public? Is an HMO entitled to reward doctors who withhold potentially necessary treatments and thereby save money?

Similarly, there are hundreds of questions relating to removal of life-support systems, living wills, disclosure in life threatening situations, etc.

v-Scientists unqualified to assess these issues

"By default, society has assigned the physician the role of theologian and moralist - a role for which he has no competence. The fear of sickness and death, aided by the intentionally cultivated aura of mystery and the deep respect of the laity for scientific achievement, has resulted in this unwritten election of the medical community as arbiter of the most fundamental truths of Torah morality and of Western Civilization." (Rabbi Dr. Moses Tendler in *Challenge*)

יטוב שברופאים לגיהנם (סנהדרין פב.) - (The normal interpretation of this is that the best doctors, just because they are leaders in the field, fail to solicit a second medical opinion, but it can also mean that they fail to solicit the appropriate medical advice.)

"Science tells us how to heal and how to kill; it reduces the death rate in retail and then kills us wholesale in war; but only wisdom...can tell us when to heal and

when to kill." (Will Durant, A History of Philosophy)

"A doctor is as qualified to pass judgment on when life begins and ends as a chef is on which foods are carcinogenic or a computer programmer about which way the PC market is about to go. All are likely to sound intelligent; none have more than an educated layman's chance of being right." (Durham/Chapel Hill Federation Newspaper, 1994)

"Thinking rigorously ethically is a highly specialized business. The (great rabbi) ... is aware that what he thinks about the centrality of the family, the value and the purpose of life, the right to self-determination and G-d are not only going to influence his answers, they will determine the very questions that get asked. And those questions will already point us toward a particular answer. As the sages put it, 'The question of a wise man is half the answer.'" (ibid.)

vi -Could not produce a system of ethical living

There is not necessarily correlation between scientific achievement and the ethical legacy of a civilization - e.g. Ancient Egypt, Persia, Modern Germany. The two partial exceptions to this were the Greeks and the U.S.A. today. (Note however, Greek anti-Semitism, lack of family and sexual values and primitive beliefs.) Not a single scientist in the 20th Century has made a lasting moral/spiritual impact.

a - No ethics

In the last 20 years, many American colleges have introduced medical and other ethical courses. Many hospitals now have an ethics committee. Although these moves are praiseworthy; they are limited to responses to given realities; i.e., science, with virtually no constraints, first discovers a particular area and only then does the ethicist deal with it.

Will Durant: "The scientist is as interested in the leg of the flea as the creative throes of a genius...."

"The physicists have known sin; and this is a knowledge which they cannot lose" -Robert Oppenheimer, lecture (1947) (Quoted in Miriam Webster Dictionary of Quotations)

"It has certainly been true in the past that what we call intelligence and scientific discovery has conveyed a survival advantage. It is not clear that this is still the case: our scientific discoveries may destroy us all." (Stephen Hawking, *A Brief History of Time*, pg. 12)

"Scientists themselves show no correlation between their greatness and their ethical Some like behavior. Einstein Sharansky, used their fame to try to promote what they saw as ethical behavior in the world. But others were simply rascals. Heisenberg worked on an atom bomb for the Nazis and Newton was callous and vindictive. After breakdown in 1693, he discarded academic pursuits for more heavy-handed work as a private investigator and prosecutor who was feared by many." (In Isaac Newton: The Last Sorcerer by Michael White, 1997)

b - Inadequate world view

Karl Jaspers: Science's failure to give man a comprehensive view of the world. (Cit., 465, Baumer, *Modern European Thought*, MacMillan.)

World view that progress is intrinsically good: We are much beholden to Machievelli...that if something has been invented then we must use it. We don't stop to think of the possible consequence of its use. (J.B. Priestley)

c - No control of society

R.G. Collingwood (Autobiography): "The gigantic increase in man's power to control nature had not been accompanied by a corresponding increase in his power to control human situations" (Baumer, *Modern European Thought*, pg. 466)

d - Made things worse

Aldous Huxley: "Man's very victory over nature constituted an important causative factor - in the progressive centralization of power and oppression and in the corresponding decline of liberty during the twentieth century." (Above Cit.)

e - No feelings, purpose or values

Sir Arthur Eddington: "Physics dealt, by choice, only with measurable quantities. But there was the whole world of feelings, purpose and values." (Above Cit. 471)

Alfred North Whitehead: "Science had abstracted from the world as a whole, in order to study, with great success, a particular aspect of the world. It was now high time to restore life to nature, including values and more." (Above Cit., 473)

Victor Weiskopf writes of his participation in the Manhattan Project, the American WW2 initiative to make the atomic bomb: "Today, I am not quite sure whether my decision to participate in this awesome-and awful-enterprise was solely based on the fear of the Nazis beating us to it. It may have been more simply an urge to participate in the important work my friends and colleagues were doing. There was certainly a feeling of pride in being a part of a unique and sensational enterprise. Also this was a chance to show the world how powerful, important and pragmatic the esoteric science of nuclear physics could be."

After the defeat of Germany, the single, most powerful reason for working on the bomb had been removed. But work continued because, "By then we were too involved in the work, too deeply interested in its progress, and too dedicated to overcoming its many difficulties ... the thought of quitting did not even cross my mind." (After the war, Weiskopf did quit working on the project.) (in *The Joy of Insight, Passos of a Physicist*, Basic Books.)

vii-Cannot, even in principle, gain a total grasp of knowledge

Even more so in practice

See A-iii above

First verse in בראשית mentions אלקים; 2nd verse = consequences of the 1st verse, אלקים not mentioned. Thereby room was left for the scientific enterprise (and if man so chooses, even as a purely secular endeavor) to understand the world. However, they will not be able to go beyond a certain point without invoking G-d. If they will try to work through the first verse - back to בראשית, they will only be able to do so by going through the name אלוקים.

מהר"ל: This world created with ה

מהרייל על אבות (דרך חיים) פייה משייא
והכל נרמז במה שכתוב (ישעיי כייו) כי בקה הי
צור עולמים העולם הבא נברא ביוייד מפני כי
היוייד מספרה עשרה... והדי מקבל היוייד ואין
היוייד נוגע, כי אין הדבר שהוא נבדל מעורב עם
הנשמי

Sir Isaac Newton: I seem to have been only a boy playing on the seashore, and diverting myself in now and then finding a smoother pebble or a prettier shell than ordinary, while the great ocean of truth lay undiscovered before me.

Alfred North Whitehead - when he went to Cambridge in 1880's, physics was supposed to be very nearly a closed subject.

Lord Kelvin: Post-Victorian physics would consist of adding a decimal point to the constants of nature.

Bertrand Russell: "Science tells us what we can know, but what we can know is little, and if we forget how much we cannot know we become insensitive to many things of great importance." (A History of Western Philosophy)

a - Indeterminacy and Probability

Heisenberg showed that we cannot know the position and the speed of an electron at the same time. If we measure the position of the electron, our very act of measurement affects it's speed, and viceversa.

In a modern adaptation of Thomas Young's 17th Century experiment, photons of light were sent through slits onto a screen. It was found that each photon goes through both slits, since an interference pattern occurs even if photons sent through one at a time. Therefore, it is thought that sub-atomic particles choose all paths at once.

All this has led scientists to believe that they can no longer talk about the absolute position of something. They can only talk about its *probability*. Simply speaking, this means that all we can do is draw a graph showing the various probabilities of where an electron or photon may be at any one time. But scientists have taken this understanding that the electron is smeared over the area of the probability curve. The fact that things at a subatomic level are never certain is not just a function of how accurate our measuring instruments are, or due to the fact that they interfere and thereby change, while measuring with the very reality they are trying to measure. Today, it is believed that these effects are intrinsic and irreducible (Allan Aspect, 1982, in Superforce, pg. 46). It is no longer true to say that the atom really does have a discrete identity at a specific point and that the problem lies with us - we are just not able to say with certainty where the electron is. Scientists actually claim that the probability curve or the smear is actually its identity. (Even probability cannot accommodate all the behavior of the electron - sometimes it tunnels through mysteriously to the far side of an object! Nobody understands how this "quantum effect" takes place.)

(According to the theory of relativity, it is not only matter which is uncertain. Space and time themselves become fuzzy concepts, subject to change relative to the speed and mass of the object and relative to the gravitational forces working on it (Davies, *Superforce*, p. 30)

Therefore, since the beginning of the twentieth century "all science is dominated by the idea of approximation" (Bertrand Russell)

b - Chaos and Complexity

Since the 1980's, a new, large area of scientific study, the study of chaotic and complex phenomena such as smoke, piles,

stock markets and the like have shown that much of what we previously thought of as just not obeying any laws do indeed have laws governing them. But these are laws of such complexity that we may never be able to provide the technical and other means necessary to calculate these properties accurately. (See **Appendix I iv** for a more detailed description of complexity.

See **Appendix E ii** where we discussed Heisenberg's Uncertainty (Indeterminacy) Principle and similar such principles.

viii-Practical Limits

Despite massive research over many decades (and in some cases centuries), scientists are still in the dark about many thousands of things, some of them quite basic. For example:

a - Conflict between Quantum Theory and Theory Of Relativity

Although these are the two primary theories currently being used to explain the universe (quantum physics at a micro, subatomic level, and relativity at a macro level), the two are actually in conflict: they cannot both be true in their curform. Yet science, while looking for the resolution to the problem, continues to relate to both as if true.

The failure to reconcile these two triumphs of the twenty century, however, has limited the ability of scientists to look at the Big Bang with anything approaching normal levels of scientific rigor.

b - Dark Matter

Calculations show that most of the matter which must exist in the universe is not currently detectable to us. There are many candidates as to what this hidden, missing or dark matter might be (the most promising being the neutrino, if it has any mass).

It may be that astrophysical theories deserve to be considered scientific in is popular sense in relation to relatively local phenomena. But it is clear that they do not deserve it in relation to relatively distant ones. Consider a comparison of the theory of dark matter, unseen and undetected, which may comprise as much as ten times the amount of ordinary matter to medical Suppose we were trying to determine the cause of a disease. suspect a certain virus but, according to known theories, there must be ten times more of that virus than we actually find in our blood samples, to overcome the body's immune response. Do we reject one or more of the theories leading to this prediction or do we call a press conference to announce the discovery of a new an mysterious phenomenon, 'the dark virus', and dream of a Nobel Prize for inaugurating this exciting new field of discovery? (Michael Phillips in Philosophy Now, Oct./Nov. 2000)

c - Migration of Birds

Biologists are still not sure how birds know when to migrate, where to migrate to, how to find the most direct route there and how to find their way back.

d - Annual Diet

Every year the American Surgeon-General puts out a recommended diet, supposedly reflecting the most balanced, healthy diet for a normal, healthy adult. But every year the diet changes. One year there is more of a particular vitamin, one year polyunsaturated fats are out, etc. The bottom line - we simply do not know enough

about food stuffs and their effect on the body.

e - Superconductivity

See above **C** iii **b** where we explained that now that superconductivity has been found to occur at higher temperatures than previously, we no longer have an explanation of how superconductivity works.

f - Shape of the Milky Way

As our knowledge of the Milky Way Galaxy (of which we are a part, at the end of one of the spirals), increases, so the map of its shape continuously gets modified. It is generally believed that the final configuration is still not known.

g - How many basic elements can exist

Although only a fixed number of basic elements exist naturally in the world, scientists have been able to manufacture more, artificially, in the laboratory. So far physicists have pushed the table up to 111 elements. Scientists do not know how far this process can go. Some are hoping to reach 114 elements, some for more some for less. Some have begun to question whether all these elements can really be called basic in the true sense of the word.

h - How does the earth move internally?

The earth revolves around its own axis, but there is also internal movement of molten material around the core. Scientists have yet to figure out how and to what degree this works

I – How are the four forces combined?

"Doubt has infected particle physics, where for many years researchers have shared the goal that all four forces of nature should eventually be unified. Those laboring in the field of string theory believe that their work provides an acceptable bridge; but others point to the waxing and waning of enthusiasm in the past 20 years and are less sanguine." (Sir John Maddox in Scientific American, December 1999, pg. 35)

j – How are genes regulated?

"Since the 1960s, molecular biologists have had the goal of understanding the way in which the genes of living organisms are regulated, but not even the simplest bacterium has yet been comprehensively accounted for." (Sir John Maddox in Scientific American, December 1999, pg. 35)

k - The Human Brain

"Nobody understands how decisions are made, or how imagination is set free. What consciousness consists of (or how it should be defined) is equally a puzzle. ... We seem as far from understanding cognitive process as we were a century ago." (Sir John Maddox in Scientific American, December 1999, pg. 35)

Instead of finding a great unifying insight, they just keep uncovering more and more complexity. Neuroscience's progress is really a kind of anti-progress. As researchers learn more about the brain, it becomes increasingly difficult to imagine how all the disparate data can be organized into a cohesive, coherent whole. Scientists still did not really understand

how the brain develops in the womb and beyond, how the brain ages, how memory works. The Harvard neuroscientist David Hubel, whose experiments with Torsten Wiesel helped to create the current crisis in neuroscience, stated at the end of his book Eye, Brain and Vision:

This surprising tendency for attributes such as form, color, and movement to be handled by separate structures in the brain immediately raises the question of how all the information is finally assembled, say for perceiving a bouncing red ball. It obviously must be assembled somewhere, if only at the motor nerves that subserve the action of catching. Where it's assembled, and how, we have no idea.

Like a precocious eight-year-old tinkering with a radio, mind-scientists excel at taking the brain apart, but they have no idea how to put it back together again.

Cognition, explained Goldman-Rakic, entails much more than merely responding automatically to a stimulus, like a driver stopping at a red light and going on green. "Humans have lots of habitual responses, automatic responses, reflexive responses. But that's not what makes them human. What makes them human is the *flexibility* of their responses, their ability not to respond as well as to respond, their ability to reflect, and their ability to draw upon their experience, to guide a particular response at a particular moment." Was she really talking about free will? "I could use that terminology," Goldman-Rakic replied, dropping her voice and speaking in a conspiratorial mock whisper, "if I really were disinhibited."

Cognitive science "is really a science of only a part of the mind, the part having to do with thinking, reasoning, and intellect," LeDoux complained in his 1996 book, *The Emotional Brain*. "It leaves emotions out. And minds without emotions are not really minds at all. They are souls on ice — cold, lifeless creatures devoid of any desires, fears, sorrows, pains, or pleasures."

Although consciousness is often equated with the mind, most mental processes occur beneath the level of awareness.

Even more mysterious than explaining consciousness is understanding how the brain creates a self, a personal identity, in each individual. We cannot say what makes you you and what makes me me.

Nor can any single theory would account for emotion. There are many aspects of emotion, he noted. There are cognitive, behavioral and other components to emotion. The mechanisms underlying fear are probably quite different from those underlying lust or hatred.

We have no idea how our brains make us who we are. There is as yet no neuroscience of personality. We have little understanding of how art and history are experienced by the brain. The meltdown of mental life in psychosis is still a mystery. In short, we have yet to come up with a theory that can pull all this together.

We do not have a theory of mental illness, nor can we explain how the mind enjoys a piece of Mozart for that matter. Nor can we explain all brains at once. A fundamental impediment to progress in neuroscience — or in any other mindrelated field for that matter — is the enormous variability of all brains and minds. Every individual is comprised of a singular combination of physiology, social identity, and personal values,

We do not know how the brain constructs pictures of the world from many disparate pieces, and thousands of other mysteries about the brain besides. (Culled from The Undiscovered Mind How the Human Brain Defies Replication, Medication, and Explanation By John Horgan (Free Press, 1999)

John A. Wheeler (Princeton): "We live on an island of knowledge surrounded by a sea of ignorance. As our island of knowledge grows, so does the shore of our ignorance." (Quoted in *Scientific American*, Dec. 1992, pg. 10)

Increasingly, practical limitations appear to impede the progress of science. For example, particle physics is dependent on very powerful particle accelerators to prove their theories since they are suggesting that certain particles existed early on in the Big Bang, which can only be replicated at very high temperatures by smashing particles together at very high But ultimately. speed. no earthly accelerator currently imaginable, generate the sort of temperatures necessary to duplicate events very early on in the Big Bang.

ix-Logical Limits

All science, but especially physics, is dependent on the fact that we are ultimately capable of giving mathematical descriptions (theorems, formulae etc.) to the phenomena we are trying to describe. Scientists find it a source of absolute wonder that the world is so aptly reduced to mathematics, which is after all, simply a product of our minds. Nevertheless, even in mathematics there are logical limits. In 1931. Kurt Godel showed that mathematical systems are, at some level, Incompleteness unprovable. In his Theorem he showed that in mathematics no finite set of axioms can answer all the questions it raises; it follows then that mathematics is infinite and there are, therefore, theories that can never be proven. (In Scientific American, Jan. '94, pg. 102-104, J. Traub and Woziokowsky apply this to many physical phenomena as well.) There is, however a type of arithmetic (called Pressburger arithmetic), wherein all the statements are, in fact provable. However, many of the theorems in this system are so complex that even using the most powerful computers imaginable, it would take millions and millions of years to prove that these

formula are true! (Heinz R. Pagels, *The Dreams of Reason*, pg. 61 & 62)

"A few years later, Alan M. Turing proved an equivalent assertion about computer programs, which states that there is no systematic way to determine whether a given program will ever halt when processing a set of data. More recently Gregory J. Chatin of IBM has found arithmetic propositions whose truth can never be established by following any deductive rules." (*Scientific American*, Oct. '94)

x-At certain point the physical world inaccessible

מהרייל על אבות (דרך החיים) פייה משייא
ויש להקשות מאחר דבראשית נמי מאמר ולמה
לא כתיב ויאמר אלקים יהי שמים וארץ. ונראה
מפני שאסור לספר מדבר שהיה קודם שנברא
העולם והאמירה היה קודם שנברא העולם
ולפיכך כתיב בראשית ברא אלקים שמתחיל
בבריאה

Rabbi Munk: verse 1 - G-d created שמים and ארץ.

ארץ then only describe creation of ארץ. This is because we cannot understand fully the dynamics of שמים. This is why שמים i.e. all we can say is that there there is also something - physical reality which follows certain laws of but which is not fully accessible.

Alternatively; שמים = שם מים pluralized are organized matter; מים = pluralized matter in all its forms; i.e. there (in some inaccessible place) there is also organized matter

תורה not a science manual - יצחק יצחק: Why did the תורה begin with the physical world), when it is a manual to direct our spirituality.

Therefore, learning science does not have status of learning תורה (see *Challenge*, Radkowsky, p. 70, par. beg. It is true...)

xi-Therefore requires the Torah to illuminate

Science = What: 10 sayings - World of הכרח:

Torah = How: 10 commandments - World of <u>choice</u>. It is only in the world of choice that morality can play a role.

xii-Messianic Era

There is no reason to believe that, in the Messianic era, science will not continue to make significant progress. The Rambam stated that the only difference between our era and that of the Moshiach is that then the clarity of G-d, the moral purpose of the world and the role of the Jews in that purpose will become absolutely clear to all mankind. Otherwise, the world will operate as it does today¹.

However, science, as practiced by the will be completely subservient to the Torah and will be used only as a mechanism for enhancing the Jews, the Torah, and everyone's closeness to השם.

SCIENCE: Page 60

רמב"ם הלכות מלכים פרק יב הלכה ב :אין בין העולם הזה לימות המשיח אלא שיעבוד מלכיות בלבד

CHAPTER E: THE METHODOLOGY OF MODERN PHYSICS: THEORY VS. PRACTICE

- i Observation And Recording Of All Facts
- ii Analysis And Classification
- iii Forming Theories And Laws
- iv Prediction And Verification
- v Peer Review And Replication
- vi Replacement Of Previous Theory
- vii Scientific Misconduct

CHAPTER E: THE METHODOLOGY OF MODERN PHYSICS - THEORY VS. PRACTICE

It is important to understand the underlying beliefs of science, not only to understand what goes into a scientific theory, but also because it essential when talking about proofs for G-d, the Divine Origin of the Torah, the existence and accuracy of the Oral Law or the Chosen People. (See separate volume on Proofs). Audiences in Discovery and similar seminars often respond to a proof by saying, "But you don't have to say it like that; you could say such and such." This reflects a misunderstanding of what is meant by the word proof. In any attempted "proof" for anything, what is meant is not absolute proof so that no other possibility can ever be suggested. Human beings are not capable of that kind of knowledge. What is meant is that, on balance, this is the best possible alternative amongst all the possibilities conceivable. (For this reason, Rabbi Dovid Gottlieb does not use the word "proofs'. Rather, he talks about "the historical verification of the Torah" and the like. "Torah" proofs are exactly of the same order as the Scientific proofs. They too are not coming to provide the only possible explanation; but the best possible explanation. But the layman often does not understand this. He assumes that scientific proofs are certain (after all he see the technological results of science all around him) and he therefore wants Torah proofs to be absolute as well. However, Chapter E will provide an insight into what goes into a scientific theory, so it can then also be shown that the Torah proofs are scientific according to the highest levels. Chapter F will show that there is an underlying belief system, a set of

undemonstrated assumptions shared by the scientific community.

Ideal science is supposed to unfold according to the following steps:

- *i Observation and recording of all facts*
- ii Analysis and classification
- iii Forming theories and laws
- iv Prediction and verification
- v Peer review and replication
- vi Replacement of previous theory
- vii- Scientific misconduct

However, science very rarely operates in this way. Steps are either followed improperly, avoided on occasion or performed in the wrong order. This is not to fault the scientific endeavor in any way. For, scientists themselves never claimed that this was the way they did business, and, on the contrary, would discover a lot less it they were constrained by this process. The idealization of the scientific process exists only as a school textbook.

Below, we take a look at each one of these steps, and put it in its correct context.

i-Observation and recording of all facts

Observation is limited by the following factors:

1- It is impossible to observe all the facts that may be relevant to any scientific theory. For this, we would have to wait until end of the world.

Even all the facts up to now are infinite. For example, if I were investigating what contributes to room temperature, I might consider the following things:

The outside temperature; the wind; the heat of lighting systems or any other cooling, heating, gas, water or other systems passing through the room; the number of people in the room and their body temperature; any other animals such as mosquitoes, flies, etc. that may be in the room; the reflective and absorptive capacity of the various materials with which the room is made and which are in the room; the interaction of these articles with outside sources of heat (such as the temperature of the couch after someone has sat on it), etc.

This list could be expanded to hundred of other items, making the final calculation nearly impossible. What the scientist does in practice therefore, is never simply collect information, that filters their information through some theoretical framework to reduce it to manageable proportions. Any data collection then usually presupposes a theory of some sort and does not, as is presumed, precede it.

Sir Arthur Eddington: The mind selected for study certain patterns of nature rather than others. "The things which we might have built and did not, are there in nature just as much as those we did build."

2- A second factor which renders information not completely objective is that most scientific "facts" are only as objective as the instrumentation through which they are preserved on theory. (In the social sciences, such as psychological testing, this filtering can be quite significant.)

LABORATORY EXPERIMENTS

Definitions:

Our senses alone are rarely accurate enough to give us the information we need. Thus Tycho Brahe, living in a pretelescope era, rejected the Copernican idea that earth moves around sun. If Copernicus were right, he reasoned, the position of the stars at the same time on different nights should change.

Ernst Mach: Since sub-atomic physics goes beyond our senses, the atomic theory can be regarded as a mathematical representation of certain facts, but no

in vitro – carried out on cells or tissue samples in a test tube

in vivo - carried out on laboratory animals (e.g. mice or guinea pigs)

Advantages: These studies can be tightly controlled, e.g. scientists can ensure that comparison groups and conditions are identical.

Disadvantages: There is a big difference between human and the test tube or laboratory animals. Not all that applies to them would apply to us.

EPIDEMOLOGICAL RESEARCH

Definition – Observational studies:

Case-control studies – Comparing factors found among one group with a certain condition to factors found among a comparable group without that condition

Cohort studies – Large groups of people are followed for a long time. Researchers try to identify factors – possible causes and preventatives – associated with illnesses that develop over time.

Advantages: Researchers can often zero in on important associations by adjusting their data statistically to account for the influence of extraneous factors. Disadvantages: Only more reliable when study is larger and carried out longer. Cannot establish cause and effect – can only suggest a relationship between two factors. Often produce contradictory results.

CLINICAL TRIALS

Definition: Studies that randomly assign people to two treatment groups, with neither the researcher nor the participants knowing which group is which until the study is completed.

Disadvantages: Not every suspected association can be subjected to a clinical trial. (e.g. it would be unethical to assign one group to smoke and another to never smoke just to prove that smoking causes cancer.

¹ The following, based on an article in the N.Y. Times Science section, gives an idea of the accuracy of various different types of scientific studies.

physical "reality" could be claimed for atoms or molecules.

Einstein in letter to Heisenberg, 1927: "But on principle it is quite wrong to try and found a theory on observable magnitudes alone. In reality, the very opposite happens. It is the theory which decides what we can observe."

3-Some information is just too inaccessible either because the events happened too long ago or are too far away. As Michael Philips wrote (Philosophy Now October/November 2000):

We have developed a technology that enables us to observe events in galaxies billions of light years away. The Big Bang Theory is based on these observations. So is our knowledge of what the universe was like in the first 10-35 second of its existence.

But how confident can we really be that our instruments are accurate at these distances?

The answer is that we do not know...we assume that our sample is representative, i.e., that the laws of nature we have discovered here, in our sector of the universe, hold everywhere...It is reasonable for us to act on this assumption [but that] does not mean that this assumption is true.

[We are right to] assume that there are general laws governing the universe...But if...can we assume that we have now discovered them or that we are anywhere close to doing so? If the universe really is diverse...we may be trying to understand the whole in terms of laws and theories that hove for a very minute part.

ii-Analysis and Classification

Ideally, we would take raw data and begin to classify it, e.g. in the case of humans by race, gender, age, health, wealth, intelligence, etc. Same as a above. But actually, scientists have come to learn

that very often, classification is so <u>biased</u> that it can lead to very wrong science. A famous example was that of Samuel Morton who in the 1830-50's classified 1000 skulls by race. (See Stephen Gould, *The Mismeasure of Man*)

be based Or mav on assumptions(called secondary hypotheses) that are simply wrong. For example, scientific theories are often based on a presumption that things have been constant in nature over a long period of time, even though there may not be any special reason to believe this. For example, carbon dating is based on measuring the ratio of C12 to C14 in a once living organism relative to the environment. But it is based on the presumption that the amount of both we find in the environment today has been constant for tens of thousand of years. In fact, there is much evidence to challenge

iii-Forming Theories and Laws

"Scientific laws and theories are not derived from observed facts, but <u>invented</u> in order to account for them. They constitute guesses (and)...require great ingenuity." (Carl G. Hempel, *Philosophy of Natural Science*, p. 17)¹

scientific theories are Many mathematical constructs. They are merely projections as to what some aspect of the micro or the macro world would look like if we could ever see it. Certainly, there is good reason to operate this way. Often the mathematical projections have later been shown to be true. This, despite the fact that many do not regard mathematics itself as existing in the real world. Richard Borcherds, leading mathematician, takes a middle view (in Scientific American, Nov. '98, pg. 21): "Some mathematics clearly is a human invention" most notably anything that depends on the fact that we use a 10-digit numbering system. "But I think some mathematics does exist before discovery. Take the Pythagorean theorem. That has been independently rediscovered several times by various civilizations. It's really there. Presumably if there were small furry creatures doing mathematics on Alpha

"Progress would do much better to glorify problems than theories. It is problems that are inherently wonderful; solutions are merely useful. I even sometimes say, only half jokingly, that theories ought to be renamed 'misconceptions', and that progress consists of moving from one misconception to a preferable

Centauri prime, they would also have some version of the Pythagorean theorem."

Stephen Jay Gould in "Questioning the Millennium" (1997), wrote the following: Galileo described the Cosmos as "a grand book written in the language of mathematics, and its characters are triangles, circles and other geometric figures." The Scottish biologist D'arcy Thompson, one of my earliest intellectual heroes and author of the incomparably well-written Growth and Form, (first published in 1917 and still in print) stated that "the harmony of the world is made manifest in Form and Number, and the heart and soul and all the poetry of Natural Philosophy are embodied in the concept of mathematical beauty."

Many scientists have invoked mathematical regularity to argue, speaking metaphorically at least, that any creating God must be a mathematician of the Pythagorean school. For example, the celebrated physicist James Jeans wrote: "From the intrinsic evidence of his creation, the Great Architect of the Universe now begins to appear as a pure mathematician." This impression has also seeped into popular thought and artistic proclamation. In a lecture delivered in 1930, James Joyce defined the universe as "pure thought, the thought of what, for want of a better term, we must describe as a mathematical thinker.'

Some corners of truly stunning mathematical regularity grace the cosmos in domains both large and small. The cells of a honeybee's hive, the basalt pillars of the Giant's Causeway in Northern Ireland make pretty fair and regular hexagons. Many "laws" of nature can be written in an astonishingly simple and elegant mathematical form. Who would have thought that E=mc2 could describe the unleashing of the prodigious energy in an atom?

But we have been oversold on nature's mathematical regularity If anything, nature is infinitely diverse and constantly surprising — in J.B.S. Haldane's famous words, "not only queerer than we suppose, but queerer than we can suppose."

misconception. That is, from a misconception that contains a great deal of falsehood to one that contains less falsehood." – leading physicist, David Deutsch, (in Philosophy Now, 2000)

"The logical progression comes only right at the end, and it is in fact quite tiresome to check that all the details really work. Before that, you have to fit everything together by a lot of experimentation, guesswork and intuition. " (Richard Borcherds, one of the worlds leading mathematicians in Scientific American, Nov. '98, pg. 21)

Einstein's Theory of Relativity was first conceived and then tested (Einstein himself devised three experiments to prove or disprove his theory), so was Ouantum Theory, some elements of which have only been proven recently. For example, Max Planck proposed a measure of the amounts or quanta of energy that atoms can absorb or emit (Planck's Constant). Science magazine (Feb. 8, 1991) reported that many physicists were so used to using Planck's Constant that they did not even realize that it had never been accurately checked. It was only in 1991 that physicists at the Los Alamos National Laboratory confirmed that the constant is in fact correct. (Physical Review Letters, Jan 21).

Steven Weinberg, after trying for a long time to apply the Higgs phenomenon to the strong interaction suddenly realized, while driving to the office one day, that he had been applying the right ideas (the Higgs phenomenon) to the wrong problem (to the strong instead of the weak force).

Fred Hoyle in 1953 predicted the existence of a previously unknown isotope of Carbon 12 based on theories of how stars generate heavy elements. Only afterward was this confirmed by experiment.

Kepler's inspiration for a sun-centered solar system was in part based on certain solar deification in which he believed (Burtt - *Metaphysical Foundations of Modern Science*). His study of planetary motion was inspired by his interest in a mystical doctrine about numbers and a passion to demonstrate the music of spheres (Hempel, *Philosophy of Natural Science*, p. 16).

The chemist Kekule had long been trying to devise a structural formula for the benzene molecule when, one evening in 1865, he found a solution while dozing in front of his fireplace. Gazing into the flames he saw snake like patterns. Suddenly, one of the flames seemed to hold onto its tale. Kekule woke in a flash: he had hit upon the now famous and familiar idea of representing the benzene structure by a hexagonal ring (Hempel, pg. 16).

Murray Gell-Mann.(A leading physicist) "We are driven by the insatiable curiosity of the scientist, and our work is a delightful game. I am frequently astonished that it so often results in correct predictions of experimental results."

The following by David Goodstein in the NY Times, October, 2000 is a good example of how theory can lend credibility to ideas even when they remain unproven: In June 1969, at a scientific meeting in Cincinnati, Joseph Weber, a physicist from the University of Maryland, announced the first detection of gravitational waves. His statement was greeted with enormous excitement among scientists and in the press. However, other scientists were unable to reproduce Weber's results, and so his claims were eventually discredited. The story brings to mind the more recent announcement by two scientists in Utah that they had discovered "cold fusion." But unlike cold fusion, which has been cast out of the house of science in spite of persistent claims by others of having detected the effect, the search for gravitational waves has grown into a global scientific industry even though no one has recorded so much as a blip. The difference is that cold fusion violates fundamental principles of theoretical physics, while gravity waves were predicted by Albert Einstein. Weber, who died while I was working on this review, is regarded by all as the father of the field of gravity wave detection.

iv-Prediction and Verification

According to the classic perfect abstract conception of how science works the following principles apply:

- 1 -Any body of knowledge could be explained by any number of theories.
- 2 "Any physical theory is always provisional, in the sense that it is only a hypothesis: you can never prove it. No matter how many times the results of experiments agree with some theory, you can never be sure that the next time the result will not contradict the theory. On the other hand, you can disprove a theory by finding even a single observation that disagrees with predictions of the theory." (Stephen Hawking, *A Brief History of Time*, pg. 10)

A classic examples of this was the discovery of Neptune. Irregularities in the motion of Uranus led to the prediction that there must be another planet, and where that planet should be. Scientists trained their telescopes on the predicted spot where the planet should be seen and hey presto! Neptune was discovered. The trouble with all of this was that it was all done using Newtonian physics. But we

SCIENCE: Page 66

¹ Irregularities in motion of Mercury failed to produce Vulcan, due to point 1 above, that many theories can explain a single phenomena.

know today that Newtonian physics is not true!

In most scientific studies involving people, we are dealing with statistically relevant samples. This allows for considerable judgement as to when an experiment with negative results should be repeated (or even reported), and whether a sub-group which shows positive results is random or significant¹.

¹ Adapted from Gina Kolata in the NY Times, July '02: Most experiments done in science fail and the hypotheses that seduced researchers turn out not to be true or, at least, the studies provide no evidence that they are true.

Generally, if the negative studies are large and the hypotheses well known, they will be published. That happened, for example, with studies of thousands of cellphone users finding no evidence that cellphone radiation predisposes to brain cancer. It also happened with a study published last month finding no evidence that men who had vasectomies are more likely to get prostate cancer.

But if the studies are small — just some professor's good idea proved wrong — the findings often are never published, leading future researchers to waste time and money going down the same blind alley. Or, if a study that fails to support a popularly held idea — that stress causes ulcers, for instance — goes unpublished, people may continue to believe in an association that has never actually been proven.

A few new journals have begun soliciting and publishing negative studies — ostensibly to prevent repetition and waste, and to acknowledge that even negative results add value to our collective knowledge bank. It's a tough sell. The tendency for science to overlook most of the vast backwash of failed experiments isn't accidental. Money, pride, politics and good old competition all play a role. And even when major negative studies are published, it may not have the effect of moving researchers on to other topics.

The journals aren't entirely to blame. Some negative data are not published, he suggests, because those conducting the studies do not want to share them.

One reason is because scientists do not want to give their competitors an advantage.

"They now know something they're not going to do again and their competitor does not," Dr. Kern said.

In an ideal world, said Dr. Leon Gordis, a professor of epidemiology at Johns Hopkins,

3-In order to test a theory, the theory must make clear predictions. This is what makes Einstein good science and evolution bad science. Evolution makes no testable prediction whereas Einstein gave three clear instances whereby his theory could be tested. One of these had to with how much the sun would bend light passing close by it. Einstein's measurements differed from those of Newton. On the

all studies, positive or negative, would be judged by whether they were well done and whether they were interesting. "I don't think there should be a journal of not finding associations," Dr. Gordis said. "If you have a good study, it should be entered into a prestigious medical journal."

"On certain controversial or emotionally charged issues, when do we decide that no further studies are needed?" Dr. Gordis asked. cellphones, scientists some continuing to look for evidence of danger. Now, Finnish scientists have announced that be reporting on experiments that suggest that cellphone the blood-brain alters allowing chemicals into the brain that should be kept out. There is, of course, no evidence that any such thing is happening in humans. But the very effort shows that the cellphone issue remains alive.

Another way to keep an issue alive is to look for subgroups of people in large negative studies whose experience seems to support a given hypothesis. You can always find such subgroups if you slice the data, said Dr. Barnett Kramer, editor of The Journal of the National Cancer Institute. They will appear simply by chance, he said, adding that since the total effect is null, for every subgroup with a positive effect, there is another with a negative effect. That does not mean that the effect in any subgroup is real — to find out you need to do another study just with them. Should you? Or should a study that enrolled mostly men be repeated with women? Should one involving whites be done again to see if the results are the same with blacks?

"There's no shortage of issues that can be raised," Dr. Gordis said. Often, he added, there is money to be found to re-do the studies with a different emphasis.

So what should a scientist do? "I'm not aware of anyone refusing money," Dr. Gordis said. "That's the acid test."

night of a solar eclipse, Sir Arthur Eddington went out on a boat off the coast of Africa and made measurements that confirmed Einstein's predictions. (Interestingly, Eddington actually made an error in his measurements, but the theory proved to be correct anyhow.)

But every scientist knows that science rarely works out that way. At best, a scientific theory gradually accumulates evidence in its favor, becoming stronger and stronger over time¹. A good example

¹ The following article by a leading cosmologist, James Peebles in *Scientific American*, January, 2001, is an example of the graded hierarchy of theories according to the amount of evidence to back them:

This is an exciting time for cosmologists: findings are pouring in, ideas are bubbling up, and research to test those ideas is simmering away. But it is also a confusing time. All the ideas under discussion cannot possibly be right; they are not even consistent with one another. ...

I compare the process of establishing such compelling results, in cosmology or any other science, to the assembly of a framework. We seek to reinforce each piece of evidence by adding cross bracing from diverse measurements. Our framework for the expansion of the universe is braced tightly enough to be solid. The big bang theory is no longer seriously questioned; it fits together too well. Even the most radical alternative--the latest incarnation of the stead state theory does not dispute that the universe is You still hear expanding and cooling. differences of opinion in cosmology, to be sure, but they concern additions to the solid part.

For example, we do not know what the universe was doing before it was expanding. A leading theory, inflation, is an attractive addition to the framework, but it lacks cross bracing. That is precisely what cosmologists are now seeking. If measurements in progress agree with the unique signatures of inflation, then we will count them as a persuasive argument for this theory. But until that time, I would not settle any bets on whether inflation really happened. I am not criticizing the theory; I simply mean that this is brave, pioneering work still to be tested.

More solid is the evidence that most of the mass of the universe consists of dark matter clumped around the outer parts of galaxies.

We also have a reasonable case for Einstein's infamous cosmological constant or something similar; it would be the agent of the acceleration that the universe now seems to be undergoing. A decade ago cosmologists generally welcomed dark matter as an elegant way to account for the motions of stars and gas within galaxies. Most researchers, however, had a real distaste for the cosmological constant. Now the majority accept it, or its allied concept, quintessance. Particle physicists have come to welcome the challenge that the cosmological constant poses for quantum theory. This shift in opinion is not a reflection of some inherent weakness; rather it shows the subject in a healthy state of chaos around a slowly growing fixed framework. We are students of nature, and we adjust our concepts as the lessons continue. The lessons, in this case, include the signs

that cosmic expansion is accelerating: the brightness of supernovae near and far; the ages of the oldest stars; the bending of light around distant masses; and the fluctuations of the temperature of the thermal radiation across the sky. The evidence is impressive, but I am still uneasy about details of the case for the cosmological constant, including possible contradictions with the evolution of galaxies and their spatial distribution. The theory of the accelerating universe is a work in progress. I admire the architecture, but I would not want to move in just yet.

How might one judge reports in the media on the progress of cosmology? I feel uneasy about articles based on an interview with just one person. Research is a complex and messy business. Even the most experienced scientist finds it hard to keep everything in perspective. How do I know that this individual has managed it well? An entire community of scientists can head off in the wrong direction, too, but it happens less often. That is why I feel better when I can see that the journalist has consulted a cross section of the community and has found agreement that a certain result is worth considering. The result becomes more interesting when others reproduce it. It starts to become convincing when independent lines of evidence point to the same conclusion. To my mind, the best media reports on science describe not only the latest discoveries and ideas but also the essential, if sometimes tedious, process of testing and installing the cross bracing.

Over time, inflation, quintessence and other concepts now under debate either will be solidly integrated into the central framework or will be abandoned and replaced by something

of this is quantum physics, which although it still has many puzzles, is gradually becoming more and more proven. A classic example of how science often works is Einstein's Special Theory of Relativity. Einstein published his paper on the Special Theory of Relativity in 1905. The first reference to it in the scientific literature was a paper from a very reputable laboratory that had test one of the predictions of the paper and found that disagreed with the laboratory's experimental result. According to the Feynman doctrine, quoted approvingly by Gribbin, Einstein's theory must have been wrong, and he should have gone back to the drawing board. But that is not at all what Einstein did. He knew that what mattered in his theory was its power and consistency. Given everything the theory did explain, he was sure that the experiment was wrong-which it was, although it took nearly a decade to sort it out. Indeed, when Feynman and Murry Gell-Mann created their theory of weak interactions—the kind that cause many particles to be unstable—they ignored a set of experiments that disagreed with the theory, and which, it turned out, were also were also wrong. Doing science at this level is not like looking up the correct spelling of words in a dictionary. It is more like a continual colloquy in which there are times when theorists are guided by experiment, and many times when the opposite is true. The great scientists have an intuition that guides them through this most uncertain terrain. (Jeremy Bernstein in The American Scholar, March 2000) (see Chapter F ii - Beauty below, for further examples.)

better. In a sense, we are working ourselves out of a job. But the universe is a complicated place, to put it mildly, and it is silly to think we will run out of productive lines of research anytime soon. Confusion is a sign that we are doing something right: it is the fertile commotion of a construction site.

v- Peer Review and Replication

When a scientist makes a scientific claim, two things happen:

1-Peer Review

He must submit his paper to a scientific journal. Before a reputable journal will publish his paper it must undergo a peer review by about three other reputable scientists. They will consider not only whether the paper has any significance, but also whether it is rigorous enough to be considered good science.

In the main, this system works well. There are some qualifications to this, however. In particular there is a constant huge pressure on the career scientist (including doctors) to publish papers. One needs a certain number of papers to become an associate, assistant and then full professor and after that still requires a certain amount per year to maintain that. On the other side, all but the top journals are under huge pressure to find articles (there are over 8000 medical journals alone!). These journals are not subject to market forces, i.e. they are not dependent on subscriptions for their survival. Rather, their money is earned through payments made by those submitting articles. In general, scientists can get the credit they need, no matter which journal they publish in. Therefore, although the peer review system works well for top journals, it is far weaker for all the journals below this standard.

2-Replication

In addition, if the discovery is of some significance, other scientists will attempt to replicate the experiment.

Replication only takes place for top discoveries. The motivation to reproduce

is low. Prizes go for originality. There is little credit given to the scientist who merely replicates the experiments of others (unless he plans on adding additional elements) and most scientific papers are not only never replicated, but never even quoted again in another scientific paper. (It is interesting to note that colleagues of Galileo failed to reproduce his results)

Raw data is usually not available in full to others, even upon special request (although the American scientific establishment is moving towards requiring this.) Therefore statistical and other errors of basic interpretation usually cannot be picked up.

The published details of an experiment usually leave out little details of practical technique (Very often a researcher does this to have the field to himself a little longer).

If another researcher does attempt to replicate an experiment and fails to do so, this is also problematic for him. "A chef cannot develop a reputation for himself by demonstrating bad recipes" (William) Broad and Nicholas Wade, Betrayers of the Truth, pg. 77) Often this failure is attributed to less prestigious replicators' lower expertise. For example, Mark Spector, who had actually forged his results in cancer research, was not caught out even though others failed to replicate his work. Their failure was attributed to Spector's superior technical expertise at purifying kinase reagents.

Sometimes, the very prestige of the scientist, appears to obviate the need to replicate. Such was the case of Sir Cyril Burt whose research on identical twins was accepted for decades, until it was finally revealed that he too had forged the results.

vi-Replacement of previous theory

It is presumed that when results seem to contradict a previous theory and to support a new one, that the old theory would be immediately replaced. This is not always the case. A theory may be maintained because it continues to be useful, even if not ultimately accurate. The most famous example of this is Newtonian physics. Today we accept that Newtonian physics is wrong and that it has been replaced by Einsteinian physics. But we continue to use Newtonian physics in everyday life, such as building bridges and buildings, because it is accurate enough to serve our needs in these areas and it is much simpler to use than Einsteinian formulae.

Another example is in the area of light, where Einstein's theory of light quanta overturned the previous theory of light as a form of electromagnetic waves. Despite this we still use the electromagnetic wave theory of light for refraction, reflection and polarization of light. Einstein himself predicted that the former's greater simplicity of use would lead to its continued usage.

Sometimes, a theory may be kept even after it has been disproven, simply because there is no new one to replace the old one. A dramatic example of this occurred in 1925, when D.C. Miller, then President of American Physical Society, announced that he had evidence contradicting the special theory of relativity. The scientific community simply ignored this dramatic development, believing that the contradiction would somehow be resolved. In this case they were indeed correct. (Paul Davies, Superforce, pg. 59)

vii-Scientific Misconduct

Although there have been some famous cases of absolute scientific fraud, this is quite rare - usually about one major case once every two years or so. These became highlighted when the American Congress conducted an inquiry into scientific misconduct. What is more common is the urge of the scientist to improve on his existing results, by rounding off his

statistical data, plagiarism, redundant publication and conflict of interest between reviewers and authors. A survey done by the New Scientist of research scientists found that 93% of respondents knew personally of cases of cheating of this sort. The *NY Science Times* (June 9, 1998) quoted the editor of the British Medical Journal, Dr. Richard Smith, as saying that scientific misconduct was a bigger problem than scientists were willing to admit and called for a national body with powers to investigate researchers without warning.¹

¹ A lower level, below actual misconduct, is bias

NY Times, 10 Aug. 2000:

Human bias has a long, unhappy history in scientific research. In retrospect, some of Gregor Mendel's data on heritable traits was probably too good to be true, but the great Austrian geneticist knew what he was seeing and may simply have discarded some data that did not fit.

Sir Arthur Eddington, the British astrophysicist, probably did the same thing with his team's measurements of the deflection of starlight over the edge of the sun in 1919. But his results fit the predictions from Einstein's theory of relativity, which Sir Arthur was championing at the time and which turned out to be correct. Scientists who are either less skilled or less lucky have had harsher experiences with bias. In the 1980's, scientists at the Organization for Heavy-Ion Research in Darmstadt, Germany, themselves convinced that established to a statistical certainty of 99.9999 percent that they had discovered either a bizarre new particle or some other unpredicted event. But the particle evaporated when physicists tried to find it in other laboratories.

"If you think there's something there and you're very committed to looking for it, you may lull yourself into saying, 'Gee, I've found it," said Dr. Michael S. Lubell, chairman of the physics department at City College of New York, who searched for the particle in experiments at Brookhaven National Laboratory.

As a result, many physicists have learned to take precautions, especially when searching for rare events amid the confusion of a much greater number of ordinary processes. In such cases, it is only by carefully subtracting events with, say, the wrong energy or mass or decay products that the few golden events emerge.

Newton added a fudge factor (an artificial or unexplained correction attached to his formula) and Einstein did the same in an attempt to reconcile his theory with the static universe model (Ironically, Einstein may have been correct for the wrong reasons). Gregor Mendel, discoverer of genetics, tidied up his statistics. John Milliken (who won the Nobel Prize for discovering the electrical charge of the atom) was also found to have made his results seem more convincing.

In some cases, the scientific researcher appears to have deceived himself, finding what he expected to find even though it was not there. The most famous case of this was the horse Clever Hans, who appeared to understand language, but was in fact merely responding to unwitting cues. Piltdown Man, a complete fake, fooled the scientific community for decades. Some feel that this was because the British scientists who had the primary access to Piltdown man were suffering from nationalistic pride that a fossil of such importance had been discovered in Britain.

In September, 2002, it was reported that a series of extraordinary advances in physics claimed by scientists at Bell Labs relied on fraudulent data. A total of 17 papers between 1998 and 2001 that had been promoted as major breakthroughs in physics, including claims last fall that Bell created Labs had molecular-scale transistors. had been improperly manipulated or even fabricated². Primary

Mistakes or biases in the subtraction can either erase those events or fail to remove all of the meaningless background.

² Dr. Schin told the committee he had deleted almost all of the original data files because his computer lacked hard disk space to store the files. He said he had no laboratory notebooks. Dr. Schin also could not reproduce any of the findings for the committee.

blame for the deceit was placed on one Bell Labs scientist, Dr. J. Hendrik Schon, but the papers tarnished co-authors who noticed nothing amiss¹, Dr. Bertram Batlogg, the former director of solid state physics research at Bell Labs, and who was the senior author of several of the papers², and the scientific journals that critics say moved too quickly to publish the sensational findings.

The case also raises questions about the core of the scientific process, in which scientists critique each other's work for errors but rely on trust that the data is honest. If the panel is correct, Dr. Schun pursued his fabrications in one of the hottest areas of research, molecular electronics, i.e. one where lots of coscientists were looking closely at what he was doing, yet still managed to continue the charade for several years. On the other hand, it is a credit to the scientific process that the fabrications were revealed after a few years and not decades or centuries later.

It became clear that when fraud occurs, the best scientists can be fooled by their own colleagues. Often, the senior scientist is the one caught unaware. In 1991, Mitchell Rosner, a graduate student at Georgetown University fraudulently reported he had found a protein that signals a fertilized egg to start developing into an embryo. His co-authors retracted their paper and apologized.

In 1981, at Cornell University, Dr. Efraim Racker, one of the grand old men of biochemistry, was taken in by a graduate student. Other scientists grew suspicious about the too-perfect data, but

Dr. Racker first defended the papers he had published with his student.

In 1986, the Nobel laureate David Baltimore found himself caught in a bitter dispute, after his colleague Dr. Thereza Imanishi-Kari was wrongly accused of faking data. For five years Dr. Baltimore defended her vigorously before submitting an apology. As it turned out, after a long, bitter inquiry by the federal government, Dr. Imanishi-Kari was exonerated in 1996, attributing the errors in her work to sloppiness rather than fraud.

Acts of scientific Fraud have not been so numerous as to prevent science's having become the most successful enterprise that human beings have ever engaged upon. More often results were fudged to give better results. Segregation ratios (3:1; 9:3:3:1) as reported by Gregor Mendel in his plant breeding experiments, conformed far too closely to theoretical expectations to be plausible. Often a scientist, convinced that he has found the truth, felt that there colleagues would not believe him unless the results were overwhelmingly supportive of them.

Sir Cyril Burt pulled of one of the greatest acts of fraud in his measurement of the IQs of twins. There was no effective check of Burt's findings because he told the IQ boys exactly what they wanted to hear. A graduated student of Iowa State University, Leroy Wolins, wrote to 37 authors of papers published in psychology journals asking for the raw data on which the papers were based. No fewer than 28 reported that their data had been misplaced, lost, or inadvertently destroyed. Of the seven that arrived in time to be analyzed, three contained 'gross errors' in their statistics.

Scientific America, December 2002, (In Science We Trust), expressed the opinions of most scientists when it stated that fraud could never become a major problem for science: "As a year for science, 2002 was marked by many wonderful accomplishments. But the year

¹ With one exception, none of his collaborators ever witnessed any of the experiments. Typically, organic crystals were grown by Dr. Sch≼n's collaborators, and he then assembled them into electronic devices.

² Most of Dr. Schon's disputed experiments, it turned out, were not even performed at Bell Labs in Murray Hill, N.J., but at the University of Konstanz in Germany.

for blemishes on the scientific record: prominently among them, the fraud of a physicist working on semiconductor technology, the withdrawn discovery of element 118, a reversal on the wisdom of hormone replacement therapy for many postmenopausal women, and conflicting recommendations about dietary fat."

"Over time, however, science rises above narrow interests and corrects itself more reliably than any other institution through such practices as the open publication of results and methods. Some recantations will be unavoidable. This is not a weakness of science; this is its glory. No endeavor rivals science in its incremental progress toward a more complete understanding of the observable world."

"Announcements of discoveries in professional journals also qualify and quantify their certainty; announcement in the general media often do not, because non-specialists usually lack he background to interpret them."

"The greatest mistake is to wait for 100 percent scientific certainty or agreement, because it will never materialize. Conclusions vetted by the professional community might turn out to be wrong, but they generally represent the best-supported views currently available."

(See examples of the non-existent heavy neutrino and cold fusion in **Appendix H** iii)

CHAPTER F: UNDERLYING BELIEFS OF SCIENCE

- i-Unity
- ii-Beauty
- iii-Simplicity
- iv-Paradigms

CHAPTER F: UNDERLYING BELIEFS OF SCIENCE

Physicist Gerald Holton: "A few simple themes-unspoken assumptions and intuitively held prejudices that originate outside science, underlie all scientific thought."

There are numerous principles, enumerated below, which represent the underlying principles to which all members of the scientific community adhere. These are not scientific principles per se. They represent the underlying deep beliefs held by scientists that there is order and harmony in the universe. They constitute the religion of science.

"In judging a physical theory... Einstein would ask himself if he would have made the universe in that particular way, were he G-d (A Zee, p. 6)."

"I want to know how G-d created the world. I am not interested in this or that phenomenon, in the spectrum of this or that element. I want to know His thoughts; the rest are details (A. Einstein in A. Zee p. 8)."

"The scientific creator, like every other, is apt to be <u>inspired by passions</u> to which he gives an intellectual explanation amounting to an <u>undemonstrated faith</u> without which he would probably achieve little (Bertrand Russel, *The Will to Doubt*, The Wisdom Library, pg. 61)."

"The scientific credo: the system of beliefs and emotions which lead a person to become a great scientific discoverer. (Bertrand Russel, *The Will to Doubt*, pg. 62)"

In 2002, Science Writer, Corey S Powell wrote a book called *G-d in the Equation:* How Einstein Became a Prophet of the New Religious Era. By new religion,

Powell means science. Science, he says, "offers a positive and immensely appealing alternative way of looking at the world, a religion of rational hope."

i-Unity

Above we described how scientists are attempting to combine the four basic forces of nature into one force (see **Appendix B v** for greater detail). There is no reason why scientists should feel that all forces are really one force. There is nothing scientifically wrong with there simply being four forces rather than one. There was no reason for scientists to conduct a search that has involved tens of thousands super-colliders that run in the billions, and a massive effort that has taken most of the century. Why could they not have simply accepted that there were four forces rather than one? However it is a deep belief of science that the more a theory will give a comprehensive, total explanation for all of nature, i.e. the more unifying it is, the truer the theory is. This is simply a religious belief shared by all scientists and is highly consistent with a belief in an Ultimate Creator (though scientists do not readily make that connection.).1

Ferris states: "Religion and science are sometimes depicted as if they were opponents, but science owes a lot to religion. Modern science began with the rediscovery, in the Renaissance, of the old Greek idea that nature is rationally intelligible. But science from the beginning incorporated another idea, equally important, that the universe really is a

¹ Timothy Ferris (author of The Red Limit - The Search for the Edge of the Universe, Bantam, 1981) wrote, produced and narrated a PBS science special: "The Creation of the Universe." : The search for, and the belief in the possibility of finding, a unified field theory "testifies to the triumph of the old idea that all creation might be ruled by a single elegantly beautiful principle."

In general, science has as its goal a total explanation of all aspects of reality (in the last two decades, an area called chaos theory has attempted to provide explanations even for those phenomena, like the weather, which previously appeared to defy scientific explanation).

The Tao of Physics, Fritjof Capra:

Subatomic particles [in fact] have no meaning as isolated entities ... Quantum theory thus reveals a basic oneness of the universe. ... We cannot decompose the world into independently existing smallest units. ... Nature does not show us any isolated 'basic building blocks', but rather appears as a complicated web of relations between the various parts of the whole." (page 78)

ii-Beauty

"What I remember most clearly was that when I put down a suggestion that was most cogent and reasonable, Einstein did not in the least contest this, but he only said, Oh, how ugly." As soon as an equations seemed to him to be ugly, he rather lost interest in it and could not understand why somebody else was willing to spend much time on it. He was quite convinced that beauty was a guiding principle in the search for important results

uni-verse, a single system ruled by a single set of laws. And science got that idea from the. belief in one God...

"The founders of modern science -- Kepler and Copernicus, Isaac Newton and even Galileo, for all of his troubles with the church -- were, by and large, profoundly religious men.

"I'm not saying that you have to believe in God in order to do science. Atheists and agnostics have won Nobel Prizes, as have Christians and Jews, and Hindus, Muslims and Buddhists. But modern scientific research, especially unified theory, testifies to the triumph of the old idea that all creation might be ruled by a single and elegantly beautiful principle" (PBS science special: "The Creation of the Universe")

in theoretical physics (H Bondi in A Zee, p. 3).

There is no reason why a scientist should presume that the world and the theories which describe that world (including some very abstract mathematical ones) should be beautiful. From a purely secular point of view, scientific theories might just as soon be ugly as beautiful. Again this is a part of the religion of science.

Paul Dirac; "It is more important to have beauty in one's equations than to have them fit the experiment." (Paul Davies, *Superforce*, pg. 54)

A Zee (p. 3):

Some physics equations are so ugly that we cannot bear to look at them, let alone write them down. Certainly the Ultimate Designer would use only beautiful equations in designing the universe! We proclaim:

Let us worry about beauty first and truth will take care of itself.

Aesthetics has become a driving force in contemporary physics.

Physicists have discovered something of wonder: nature, at the fundamental level, is beautifully designed.

(p. 4):

Aesthetic imperatives of contemporary physics make up a system of aesthetics that can be rigorously formulated.

As we examine nature on deeper and deeper levels, she appears ever more beautiful; Why should that be?

See also Paul Davies, *Superforce*, p. 68, last paragraph.

Symmetry

Simple symmetries are seen everywhere in nature. Anything which is shaped in a circle or a square, snowflakes, reflections are all symmetrical. It was the discovery of deeper symmetries in nature which helped to unlock many of the secrets of higher physics. As Paul Davies puts it: "Forces are simply nature's attempt to maintain various abstract symmetries in the world" (Superforce, Davies, p. 7; see also p. 112-116)¹

¹ The discovery of these hidden symmetries is that it is all the more remarkable given that, on the surface, everything in nature seems to demand the opposite, that things be slightly asymmetrical. In Lucifer's Legacy, Frank Close writes that, if Creation had been perfect, and its symmetry had remained unblemished, nothing that we now know would ever have been. The world is comprised of matter and antimatter. Antimatter, is the exact opposite of matter, its mirror, symmetrical particle. When any particle of matter meets its mirror antiparticle. mutual annihilation occurs. Physicists at CERN, the European Centre for Particle Physics in Geneva, can even watch this happen, as well as the converse, where a large enough concentration of energy can coagulate into the two forms of substance: matter, as we know it, and its mirror image,

A perfect Creation, with its symmetry untainted, would have led to matter and antimatter in precise balance and a mutual annihilation when in the very next instant they recombined: a precisely symmetrical universe would have vanished as soon as it had appeared. Such a uniform cosmic soup could hardly have led to the asymmetrical universe that we are a part of today where antimatter appears to be all but absent.

However, another theory states that the two were indeed made equally in the Creation. Soon afterwards something interceded, the symmetry between matter and antimatter was slightly lost, with the result that after the great annihilation, a small proportion of the matter was left over. Those remnants are what have formed us and everything around us as far as we can see. We are the material rump of what must have been an even grander Creation.

Scientists also see the need asymmetry in the four forces. Each one of the four forces is of a very different strength, and just as well. For example, we needed a weak gravitational force to coalesce matters into the sun. But the warmth from the sun comes from a much stronger, electromagnetic force, force involved whereas the transmutation of hydrogen in the sun is much weaker than that of the electromagnetic force. Had the force driving the solar furnace been as powerful as the electromagnetic force, all of the solar fuel would have been exhausted within five hundred thousand years—far too brief a time for life on earth, or anywhere, to have emerged. This separation of the electromagnetic force and its aptly named 'weak' force is but one of the critical asymmetries that has been necessary for our existence

So too, the asymmetry in the atoms, the building blocks of all of life. In the atoms, it is the tiny electrons that mover around rapidly. cross over to other electrons and radiate energy. The middle of the atom comprises the positively charged nucleus. All but one of the two thousand parts of the mass of an atom resides in this central nucleus. The positives, too heavy to be easily stirred, tend to stay at home and form the templates of solidity. This asymmetry in mass is crucial for the structure of materials.

Life appears to thrive on asymmetry, a distinction between left and right in the basic structures of organic molecules. Water proteins, and DNA all have shapes that differ from their mirror images. Superficially identical in all respects but for the interchange of left and right, one might have reasonably expected that both forms would be equally abundant in nature. However, it is not so; life is mirror asymmetric. This is not simply a matter of there being more right handers than left, or even of our heart and stomach being found, usually, on our left side. The amino acids and molecules of life in one form have the ability to know that they exist and to be cogniscent of the universe; their mirror images are inorganic, lifeless. Life chooses one form while the mirror image is rejected.

The deeper one looks, the more asymmetry becomes apparent and seemingly necessary for anything 'useful' to have emerged. And yet, seemingly deeper still, everything emerges symmetrical once more.

The focus of much current research is to understand how nature hides symmetry, producing structured patterns out of underlying uniformity.

Scientific American July 2002 Uncovering Supersymmetry, By Jan Jolie:

Symmetry principles occur through physics, often in ways that one wouldn't expect. For example, the law of conservation of energy can be derived from a symmetry principle involving the flow of time. The equations governing elementary paricle

physics are fundamentally based on symmetries.

Einstein's theory of special relativity is a theory of the symmetries of empty space and time. Effects such as length contraction and time dilations, which flatten fast-moving clocks and make them run slow, are operations of the symmetry group, similar to rotating your point of view in space, but with time as par of the "rotations." The fundamental forces are dictated by symmetries called gauge symmetries. Conservation of electric charge is a consequence of yet another symmetry.

Supersymmetry is a remarkable symmetry. In elementary particle physics, it interchanges particles of completely dissimilar types, the kind called fermions (such as electrons, protons and neutron), which make up the material world, and those called bosons (such at photons), which generate the forces of nature. In quantum physics particles are divided into bosons and ferrmions. The underlying difference between bosons and fermions is this: in a collection of particles, if two identical fermions are swapped (for instance, switch two electrons), the total quantum state of the collection is inverted. (imagine crests and troughs of a wave being interchanged.) Swapping two identical bosons, in contrast, leaves the total state unaltered. Those characteristics lead to the Pauli exclusion principle, which prevents two fermions from occupying the same state, and to bosons' propensity to collect together in a common state, as in laser beams and Bose-Einstein condensates. Bosons, in contrast, prefer to collect in identical states, as demonstrated by helium 4 atoms in a superfluid. Another way of saying this is as follows: Fermions are inherently the individualists and loners of the quantum particle world: no two fermions ever occupy the same quantum state. Their aversion to close company is strong enough to hold up a neutron star against collapse even when the crushing weight of gravity has overcome every other force or nature. Bosons, in contrast, are convivial copycats and readily gather in identical states. Every boson in a particular state encourages more of its species to emulate it. Under the right conditions, bosons form regimented armies of clones, such as the photons in a laser beam or the atoms in superfluid helium 4.

Yet somehow in the mirror of supersymmetry, standoffish fermions look magically like sociable bosons, and vice versa. Figuratively, you might say it is a symmetry

iii-Simplicity

For practical reasons, scientists are always looking to explain things according to the most simple formula possible. This allows complex things with many variables to become easily manageable and usable. But there is no reason to expect that everything in the universe can be so reduced, and that because a scientific theory is simpler than another, that it is therefore more true. Yet scientists believe just that. From a purely scientific point of view, there is no rational reason why the

that lets you compare apples and oranges. Hold up an apple to the supersymmetry mirror, and its reflection looks and tastes like an orange.

In the 1980s nuclear theorists predicted that a different form of supersymmetry could exist in certain atomic nuclei. Nuclei with even numbers of protons and neutrons and those with odd numbers.

By mapping bosons onto fermions, and vice versa, supersymmetry opens up a new class of possible relations among particles. These relations result in far greater computational power for analyzing or predicting a system's behavior.

The symmetries predicted are of a special type known as dynamical symmetries. Ordinary symmetries look the same when viewed in a mirror. Your left hand is approximately the mirror image of your right hand. Dynamical symmetries, in contrast, relate not to the objects themselves gut to the equations that govern the dynamics of the objects.

For the known particles to obey supersymmetry, they must each have a "superpartner" – every boson must have a fermionic counterpart, and vice versa. The known particles do not have the right properties to be one another's partners, so new particles are predicted. The Standard Model is extended t the superymmetric standeard model. The postulated fermionic partners go by the names photino, gluino, Wino, Zino, grativino and higgsino. The bosonic partners have an "s" added to their names: selecctron, smuon, sneutrino, squark and so on . None of these particles have yet been detected.

world should be explained according to simpler rather than more complicated formula. Ironically in fact the Church argued with Copernicus that the fact that his theory was simpler (and more elegant) was no indication that it was more true. (Copernicus had proposed a heliocentric system of planetary motion in contrast to the Church accepted doctrine of Ptolemy's but ingenious and accurate complicated system of circles and subcircles, with different radii, tilts and different amounts and directions of eccentricity.)

iv-Paradigms

In E vi above, we showed that sometimes an old theory continues to get used even when it has been disproven either because it continues to be accurate enough and simpler than the newer theory (Newtonian physics), because a newer theory has yet to be found, or because the scientific community has such faith in the theory that it ignores the challenges to that theory, believing that the challenge will somehow be answered at some future date. In addition to all of this we have shown that science uses certain beliefs (unity, simplicity and beauty) which are simply unproven axioms. "Science repudiates philosophy. In other words it has never cared to justify its faith or explain its meaning." (Bertrand Russel, The Will to Doubt, p. 65).

All of this goes into what Thomas Kuhn calls the paradigm of science. Within quiet periods only certain types of questions are considered legitimate within the scientific community and therefore only certain types of answers are going to be given. Kuhn states that these are essentially puzzles, problems that do not bring the overall paradigm into question. A paradigm is therefore not simply a scientific theory or set of theories; it is rather a whole way of looking at the world. It is sometimes very difficult for scientists

to imagine anything outside of their paradigm. Thus in 1894 Albert Michelsen, the great physicist who first determined the speed of light, stated: "the more fundamental laws and facts of physical science have all been discovered, and these are now so firmly established that the possibility of their ever being supplanted in consequence of new discoveries is extremely remote. Our future discoveries must be looked for in the sixth place of decimals." Within 30 years of his statement, almost every major scientific theory which he held dear had been overturned. A specific paradigm continues until anomalies within the paradigm build up and a revolutionary paradigm, like Einstein's theory of relativity, is proposed. The old paradigm is not just discarded. The new paradigm has to battle the old and in fact a correct theory may initially be rejected by the majority of the scientific community, finding it too radical for the thinking of the time. Examples of such new theories include Thomas Young's theory light; Pasteur's wave of fermentation; Mendel's theory of genetics; Louis Pasteur's germ theory of disease; Joseph Lister's discovery of antisepsis; Ignaz Semmelweis' washing hands before examining patients!

Usually young scientists propose and accept the new paradigm, while older ones adhere to the old paradigm. Max Planck, one of the discoverers of quantum theory, claimed that the old ideas die only with those who hold them.

(Paul Feyerabend (Against Method) has taken this even further, claiming that non-rational factors are dominant in science. However, most scientists do not agree with this radical approach. See Appendix **H** iii for further discussion).

Joao Maguijo wrote the following article in Scientific American January 2001, *Plan B for the Cosmos:*

...Dethroning the constancy of G has been exquisitely fashionable. In contrast, the speed of light, c, has remained inviolate. The reason is clear: the constancy of c and its status as a universal speed limit are the foundations of the theory of relativity. And relativity's spell is so strong that the constancy of c is now woven into all the mathematical tools available to the physicist. "Varying c" is not ever a swear word; it is simply not present in the vocabulary of physics.

Inflation...Its key insight is that for a light wave in an expanding universe, the

distance from the starting point is greater than the distance traveled. The reason is that expansion keeps stretching the space already covered...Seemingly disjointed regions could thus have communicated with one another and reached a common temperature and density. When the inflationary expansion ended, these regions began to fall out of touch.

The same thing could have been achieved if light simply had traveled faster in the early universe than it does today. As the speed of light slowed, those regions would have fallen out of contact.

APPENDIX A: THE BIG BANG

- i-The State of Cosmology Today
- ii-Description
- iii-Proofs for the Big Bang theory
 - a-Red Shift Dopler Effect
 - b-Radio Waves showed changes in universe
 - c-Cosmic Background Radiation
 - d-COBE
 - e-Entropy
 - f-Composition of the Universe
- iv-Reactions to the Discovery of the Big Bang.
- v-Inflationary Theory
- vi-What happened before the Big Bang?
- vii-What happened after the Big Bang?
- viii-A Narrative Description of the Discovery of the Big Bang
- ix-Is the Universe still expanding and how will it end?

APPENDIX A: THE BIG BANG

i-The State of Cosmology Today

Reflecting on the state of cosmology today, Dennis Overbye¹ made the following comment: "Until the 21st Century it was easy to make fun of cosmologists, pronouncing judgment on the fate of the universe or the behavior of galaxies billions of light-years away, with only a few scraps of light as evidence.

In the last few years, blessed with new instruments like the Hubble Space Telescope and other space-based observatories, a new generation of their giant cousins on the ground and everfaster computer networks, cosmology is entering "a golden age" in which data are finally outrunning speculation.

As a result, cosmologists are beginning to converge on what they call a "standard model" of the universe that is towering in its ambition. It purports to trace, at least in broad strokes, cosmic history from the millisecond after time began, when the universe was a boiling stew of energy and subatomic particles, through the formation of atoms, stars, galaxies and planets to the vast, dilute, dark future in which all of these will have died.

The universe, the cosmologists say, was born 14 billion years ago² in the Big Bang. Most of its material remains resides in huge clouds of invisible so-called dark matter³, not yet identified.

²Recently, a group of astronomers led by Dr. William Percival at the University of Edinburgh is 13.89 billion years old, plus or minus half a billion years

A good case can be made, scientists now agree, that the universe will go on expanding forever and may even be speeding up over time, under the influence of a "dark energy" even more mysterious than dark matter."

Cosmologists appear to be answering now some of the major questions that they have had since the 1920's. On the other hand, as recently as July 2002, *Dr. Marc Davis, a cosmologist at the University of California at Berkeley, called it "a universe chock full of exotics that don't make sense to anybody."*

Moreover there are some questions that scientists still do not know how to ask, let alone answer, scientifically. Was there anything before the Big Bang? Is there a role for life in the cosmos? Why is there something rather than nothing at all? Will we ever know?

"We know much, but we still understand very little," said Dr. Michael Turner, a cosmologist at the University of Chicago.

ii-Description

This theory postulates that all matter exploded outwards from a super hot point at the beginning of measurable time⁴.

¹NY Times, July, '02

³Only 4.8 percent of it is made of ordinary matter. Matter of all types, known and unknown, luminous and dark, accounts for just

^{27.5} percent. The rest of creation, 72.5 percent, is the mysterious dark energy.

⁴ Fred Hoyle, an English cosmologist, was the first to call this process the big bang. Hoyle intended to disparage the theory, but the name was so catchy it gained popularity. It is somewhat misleading, however, to describe the expansion as some type of explosion of matter away from some particular point in space. Rather, what is happening is the unfolding of space itself. The expansion is similar to a rising loaf of raisin bread. The dough is analogous to space, and the raisins, to clusters of galaxies. As the dough expands, the raisins move apart. Moreover, the speed with which any two raisins move apart is

Within seconds this process slowed and matter began to cool¹, but the universe continues to expand to this day.

Prior to the Big Bang Theory, the accepted scientific theory was the Steady-State Theory, which held that the world had always existed.

"The Big Bang...was not an event which occurred within the universe; it was the coming-into-being of the universe, in its entirety, from literally nothing" (Davies-Superforce, pg. 16). Everything - all matter, energy, even space and time came into being at that precise instant. Scientists think they can describe what the detailed conditions of the early universe

directly and positively related to the amount of dough separating them.

At a particular instant roughly 12 billion years ago, all the matter and energy we can observe, concentrated in a region smaller than a dime, began to expand and cool at an incredibly rapid rate. By the time the temperature had dropped to 100 million times that of the sun's core, the forces of nature assumed their present properties, and the elementary particles known as quarks roamed freely in a sea of energy. When the universe had expanded an additional 1,000 times, all the matter we can measure filled a region the size of the solar system.

At that time, the free guarks became confined in neutrons and protons. After the universe had grown by another factor of 1,000, protons and neutrons combined to form atomic nuclei, including most of the helium and deuterium present today. All of this occurred within the first minute of the expansion. Conditions were still too hot, however, for atomic nuclei to capture electrons. Neutral atoms appeared in abundance only after the expansion had continued for 300,000 years and the universe was 1,000 times smaller than it is now. The neutral atoms then began to coalesce into gas clouds, which later evolved into stars. By the time the universe had expanded to one fifth its present size, the stars had formed groups recognizable as young galaxies. When the universe was half its present size, nuclear reactions in stars had produced most of the heavy elements from which terrestrial planets were made. Our solar system is relatively young: it formed five billion years ago, when the universe was two thirds its present size.

were, instant by instant from when it was 10 -35 seconds old. They cannot explain (although there have been some attempts) what happened before then, and especially how matter, energy, space and time could come out of nothing.

The Big Bang Theory does not mean that we can identify a center of the universe. This would only be so if there was something akin to an explosion into an already existing void. But there was no such void. Space itself was created by the Big Bang. Therefore, the universe expands equally in every place, with no identifiable center.

The universe may expand forever, in which case all the galaxies and stars will eventually grow dark and cold. The alternative to this big chill is a big crunch. If the mass of the universe is large enough, gravity will eventually reverse the expansion, and all matter and energy will be reunited. During the next decade, as researchers improve techniques for measuring the mass of the universe, we may learn whether the present expansion is headed toward a big chill or a big crunch².

² In the near fixture

We will also continue to study issues that the big bang cosmology does not address. We do not know why there was a big bang or what may have existed before. We do not know whether our universe has siblings--other expanding regions well removed from what we can observe. We do not understand why the fundamental constants of nature have the values they do.

In the near future, we expect new experiments to provide a better understanding of the big bang. New measurements of the expansion rate and the ages of stars are beginning to confirm that the stars are indeed younger than the expanding universe. New telescopes such as the twin 10-meter Keck telescopes in Hawaii and the 2.5-meter Hubble Space Telescope, other new telescopes at the South Pole and new satellites looking at background radiation as well as new physics experiments searching for "dark matter" may allow us to see how the mass of the universe affects the curvature of space-time, which in turn influences our observations of distant galaxies.

iii-Proofs for the Big Bang theory

James Peebles, a leading cosmologist, wrote the following in *Scientific American*, January, 2001 as part of a larger article:

Over the past 70 years we have gathered abundant evidence that our universe is expanding and cooling. first, the light from distant galaxies is shifted toward the red, as it should be if space is expanding and galaxies are pulled away from one another. Second, a sea of thermal radiation fills space, as it should if space used to be denser and hotter. Third, the universe contains large amounts of deuterium and helium, as it should if temperatures were once much higher. Fourth, galaxies billions of years ago look distinctly younger, as they should if they are closer to the time when no galaxies existed. Finally, the curvature of spacetime seems to be related to the material content of the universe, as it should be if the universe is expanding according to the predictions of Einstein's gravity theory, the general theory of relativity.

That the universe is expanding and cooling is the essence of the big bang theory. You will notice I have said nothing about an "explosion"--the big bang theory describes how our universe is evolving, not how it began.

Cosmologists are still scratching their heads as evidence continues to mount that our universe is unlike anything we imagined only a few years ago: The universal expansion is accelerating rather than slowing down. Some mysterious, repulsive "dark energy" seems to fuel the acceleration, overpowering the tendency of the expansion to decelerate. But scientists are not sure what is this dark energy is.

a-Red Shift - Doppler Effect

From 1913-1925, Vesto Slipher began to discover that many galaxies in the universe are expanding away from us at great speeds. In 1923, Edwin Hubble showed that the whole universe is expanding in every direction at a uniform rate (which is now known as the Hubble Constant)¹. The further away from us a star

¹ Hubble's measurements indicated that the redshift of a distant galaxy is greater than that of one closer to Earth. This relation, now known as Hubble's law, is just what one would expect in a uniformly expanding universe. Hubble's law says the recession velocity of a galaxy is equal to its distance multiplied by a quantity called Hubble's constant. The redshift effect in nearby galaxies is relatively subtle, requiring good instrumentation to detect it. In contrast, the redshift of very distant objects-radio galaxies and quasars--is an awesome phenomenon; some appear to be moving away at greater than 90 percent of the speed of light.

Hubble contributed to another crucial part of the picture. He counted the number of visible galaxies in different directions in the sky and found that they appear to be rather uniformly distributed. The value of Hubble's constant seemed to be the same in all directions, a necessary consequence of uniform expansion. Modern surveys confirm the fundamental tenet that the universe is homogeneous on large scales. Although maps of the distribution of the nearby galaxies display clumpiness, deeper surveys reveal considerable uniformity.

The Milky Way, for instance, resides in a knot of two dozen galaxies; these in turn are part of a complex of galaxies that protrudes from the so-called local supercluster. The hierarchy of clustering has been traced up to dimensions of about 500 million light-years. The fluctuations in the average density of matter diminish as the scale of the structure being investigated increases. In maps that cover distances that reach close to the observable limit, the average density of matter changes by less than a tenth of a percent.

To test Hubble's law, astronomers need to measure distances to galaxies. One method for gauging distance is to observe the apparent brightness of a galaxy. If one galaxy is four times fainter than an otherwise comparable galaxy, then it can be estimated to be twice as far away. This expectation has

is, the faster it is speeding away from us. This means that at some stage in the past all of the universe must have been contracted together.

The movement of stars away from the earth causes them to have a reddish color (they shift towards the red side of the color spectrum). The farther away a star is from the earth, the faster it is moving away, and thus the greater the Red Shift. This is similar to the pitch of a siren, gets higher as it approaches us and lower after it passes us. As the sound wave must travel farther to reach us, each subsequent wavelength of the sound gets longer. Similarly with light, the wavelength of light from a galaxy which is moving away from us is stretched towards the longest or reddest wavelength.

b-Radio waves showed changes in universe

now been tested over the whole of the visible range of distances.

Some critics of the theory have pointed out that a galaxy that appears to be smaller and fainter might not actually be more distant. Fortunately, there is a direct indication that objects whose redshifts are larger really are more distant. The evidence comes from observations of an effect known gravitational lensing [see illustration opposite page]. An object as massive and compact as a galaxy can act as a crude lens, producing a distorted, magnified image (or even many images) of any background radiation source that lies behind it. Such an object does so by bending the paths of light rays and other electromagnetic radiation. So if a galaxy sits in the line of sight between Earth and some distant object, it will bend the light rays from the object so that they are observable [see "Gravitational Lenses," by Edwin L. Turner; Scientific American, July 1988]. During the past decade, astronomers have discovered about two dozen gravitational lenses. The object behind the lens is always found to have a higher redshift than the lens itself, confirming the qualitative prediction of Hubble's law.

In the early 60's, Martin Ryle and his colleagues at Cambridge found that there were many more sources of radio waves far away than nearby. According to the astronomers' way of measuring time, radio waves from these distant objects had taken billions of years to reach us. They were therefore emitted from their source when the universe was at a much earlier stage, giving us a picture of what the universe looked like then. The fact that the universe then looked so different from the way it looks to us today ran counter to a Steady State theory.

c-Cosmic Background Radiation

In 1965 Arno Penzias and Robert Wilson of Bell Labs discovered a continuous, faint afterglow radiation of 3 degrees above absolute zero from the intensely hot Big Bang spread evenly over the entire universe.

Penzias and Wilson made this discovery completely by accident: The measurements showed that the earth itself could not be the source of this radiation, nor could the radiation be coming from the direction of the moon, the sun or any other particular object in the sky. The entire Universe appeared to be the source. The that Penzias and radiation Wilson discovered has exactly the wavelengths expected for the light and heat produced in a great explosion.

Recent satellite readings of the background radiation (see COBE below) fall within better than 99.9 percent of what the theory predicts.

This radiation is known as the cosmic microwave background (CMB) radiation. Because this radiation was emitted nearly 15 billion years ago and has not interacted significantly with anything since then, getting a clear picture of the CMB is

equivalent to drawing a map of the early universe¹.

d-COBE

The discovery of Cosmic Background Radiation spurred astronomers to obtain two crucial sets of observations that would reveal some of the basic details of how the universe was born. The first goal was to measure the spectrum of the cosmic radiation to determine whether it matched the ideal-radiator shape predicted by nearly all cosmological theories. The second goal, even more challenging, was to find small amounts of radiation arriving from different directions in space. These differences would have arisen from tiny local inequalities in the density of matter during the period when photons separated from each other and atoms began to form. Theorists believed such variations were the "seeds" that led to the formation of galaxies. To tests these theories, the COBE Background Explorer) (Cosmic launched in 1989. By 1992, COBE had confirmed both observations, leading one of the collaborators, George Smoot, to say

The cosmic background radiation has two distinctive properties. First, it is nearly the same in all directions, as predicted by the big bang. Second, the spectrum is very close to that of an object in thermal equilibrium at 2.726 kelvins above absolute zero. The cosmic background was expected to be this low because of the universe's expansion.

The cosmic background radiation provides direct evidence that the universe did expand from a dense, hot state, for this is the condition needed to produce the radiation. In the dense, hot early universe thermonuclear reactions produced elements heavier than hydrogen, including deuterium, helium and lithium. Scientists calulate the mix of the light elements appeared later, as products of the thermonuclear reactions that power stars. elements just as they are now observing them. That is, all evidence indicates that the light elements were produced in the hot young universe, whereas the heavier

about the differences in intensity of radiation, "If you're religious, it's like looking at G-d." (*Scientific American*, March '97, pg. 110-112)

(COBE) detected minuscule variations—only one part in 100,000—in the radiation's temperature. These variations provide evidence of small lumps and bumps in the primordial plasma. These later evolved into the large-scale structures of the cosmos: the galaxies and galaxy clusters that exist today.

In the late 1990s several ground-based and balloon-borne detectors observed the CMB with much finer angular resolution than COBE did...The observations are also consistent with the theory of inflation, according to which there was a period of phenomenally rapid expansion in the first few moments after the big bang. [10⁻³⁸ of a This year the National second². Aeronautics and Space Administration plans to launch the Microwave Anisotropy Probe (MAP), which will extend the precise observations of the CMB to the entire sky. The European Space Agency's Planck spacecraft, scheduled for launch in 2007, will conduct an even more detailed mapping³.

² The strongest evidence for inflation would be the observation of inflationary gravitational waves. In 1918 Albert Einstein predicted the existence of gravitational waves as a consequence of his theory of general relativity. Just as x-rays allow doctors to peer through substances that visible light cannot penetrate, gravitational waves should allow researchers to view astrophysical phenomena that cannot be seen otherwise. Gravitational waves have never been directly detected. The plasma that filled the universe during its first 500,000 years was opaque to electromagnetic radiation, photons because any emitted were immediately scattered in the soup of subatomic particles. Therefore, astronomers cannot observe any electromagnetic signals dating from before the CMB. In contrast, gravitational waves could propagate through the plasma.

³ A telescope in eastern Australia has seen what appear to be the faint imprint of waves, much like sound waves, that may have rippled

through the gases of the young universe. Scientists have long theorized such waves were the seeds for all structures glittering in the heavens today.

The imprints were revealed within the clumps and filamentary patterns formed by tens of thousands of galaxies that the telescope observed in Earth's cosmic neighborhood. The findings ... have emerged from the largest and most detailed mapping of galaxies ever made, including the positions of nearly 170,000 galaxies.

Scientists found that hidden in the irregular clumps and filaments were imprints of waves of particular sizes, or wavelengths, that cosmologists believe were generated in the explosive birth of the universe. The waves are thought to have seeded the primordial gases with slight irregularities that later grew into galaxies and clusters.

If confirmed, the observations would be scientists' first direct glimpse of what amounts to a blueprint for the structure of the universe. A much larger survey now in progress, called the Sloan Digital Sky Survey and involving the United States, Germany and Japan, would among other things determine about a million galaxy positions over the next several years.

The problem of how structures like galaxies and galaxy clusters could have formed has persistently bedeviled scientists working out the theory of the Big Bang, the great explosion in which the universe apparently began. Early measurements of the cosmic background radiation, emitted from the hot gases of the young universe, seemed to show that it was nearly smooth and featureless, with no irregularities that could have spawned lumpy structures like galaxies. But in 1992, a NASA satellite called the Cosmic Background Explorer satellite, or COBE, made highly sensitive measurements of the radiation and saw minute temperature variations suggesting the existence of socalled acoustic waves sloshing in the early

Subsequently, measurements of the radiation have turned up a series of discrete "tones," or wavelengths, that theorists have predicted should have been generated in the explosion. But while those waves are thought to have been the seeds that allowed galaxies and other structures to coalesce, no direct evidence for the waves had until this point turned up in the confusion of the present-day heavens. (Based on an article in the NY Times, May, 2001)

e-Entropy

Clausius' second law of Thermodynamics is the law of entropy, i.e. that every day the universe becomes more and more disordered. This is considered an irreversible process. Although we may see some things, like plants, developing into a high state of order, that is only at the expense of the universe as a whole.

If you put some chemicals in a closed jar, some of the chemicals may react, some heat may be produced, some of the chemicals may change into others, etc. Eventually, the contents of the jar settle down at a uniform temperature and nothing further happens. The jar has now reached its state of maximum entropy (known as thermodynamic equilibrium).

Since the universe is still highly ordered and was even more ordered in the past, it follows that the universe could not have existed for ever: otherwise it would have reached its state of maximum entropy a long time ago. It follows, that at some time in the past, the universe must have been fully wound up, probably at the time of the Big Bang.

Scientists presume as a matter of course that all laws apply all over the universe and in fact, this has generally shown to be true. Thus it is presumed that gravity will work the same way on the opposite side of the cosmos as it does here. Thus it is a curious fact, that entropy, although it was known since Newton's time, was never applied in this way until many other proofs for the Big Bang had been supplied. If scientists would have ??omitted that the universe was wound up at some stage, in defiance of the law of entropy, then the next logical question would have been who or what wound it up. uncomfortable theological implications of this ??? the Big Bang Theory by two centuries.

f-Composition of the Universe

Atom smashers which push subatomic particles to extremely high energies, produced results that allowed researchers to calculate that the early universe should have been about three-quarters hydrogen and one-quarter helium. When astronomers inspect the oldest stars and nebulae, they find them composed of almost exactly that mix.

On Jan. 9, 2003 astronomers reported seing what they think are some of the earliest known objects in the universe, including the most distant quasar ever detected.

The faint light of 26 young galaxies and three quasars, objects thought to be powered by supermassive black holes, were observed at a distance of some 13 billion light-years, at the time the universe was less than a billion years old and apparently just emerging from an epoch of utter darkness.

The observations were made by two groups of astronomers, one using infrared images from the Sloan Digital Sky Survey and the other analyzing new photographs from the Hubble Space Telescope.

In current theory, after its creation in the Big Bang about 14 billion years ago, the expanding universe cooled down and became opaque. No light could beam through the omnipresent neutral hydrogen. Sometime during that dark age — the timing is one of cosmology's big mysteries — stars and galaxies began forming and their ultraviolet light eventually cleared away the neutral hydrogen and the opacity. It was the beginning of a universe of starry nights.

iv-Reactions to the Discovery of the Big Bang

Robert Jastrow, a famous astronomer who claims to be an agnostic, describes how resistant the scientific community was to accepting the Big Bang, because it seemed to point to a creation by G-d: ... the reaction from the astronomical community ranged from skeptical to hostile" (*G-d and the Astronomers*, pg. 17)

This huge initial resistance to the theory was based purely on the dominant secular biases of the time. (See L. Kelemen, Permission to Believe, the Cosmological approach.) One such skeptic was Einstein himself. Willem de Sitter and Alexander Friedmann showed two separate solutions from Einstein's Theory General Relativity predicting an exploding universe. But Einstein objected to both of them, making two very basic, totally uncharacteristic errors in mathematics, , in doing so. He ignored Friedmann's letter to him proving his (Friedmann's) assertion and he responded to the scientific journal that published Friedmann's result, saying that these results were suspicious. He was later forced to admit his error, and after Edwin Hubble had proven the issue quite decisively, (see below) accepted the expanding universe as true. Nevertheless, he was still to write to de Sitter, "This circumstance [of an expanding Universe] irritates me." In another letter he stated, "To admit such a possibility seems senseless."

On this Jastrow (pg. 29) comments: "This is curiously emotional language for a discussion of some mathematical formulas. I suppose the idea of a beginning in time annoyed Einstein because of its theological implications. We know he has a well defined feeling about G-d, but not as the Creator or the Prime Mover. ... When Einstein came to New York in 1921 a Rabbi sent him a telegram asking, 'Do you believe in G-d?' and Einstein replied,

'I believe in Spinoza's G-d, who reveals himself in the orderly universe of what exists "

Still others held onto the steadystate theory until the 1960's, when the evidence for the Big Bang theory became overwhelming. Today, all scientists accept some version of the theory.

One of the world's leading astronomers, Allan Sandage, stated recently that contemplating the majesty of the Big Bang helped make him a believer in G-d, willing to accept that Creation could only be explained as a miracle. (*U.S. News & World Report*, July 20, 1998)¹

v-Inflationary Theory

The newer Inflationary Theory is a modification of the Big Bang Theory. The Theory of Inflation was first proposed by Alan H. Guth of Stanford² in 1979 and is quite widely supported by scientists today. Inflation states that there was a time, very soon after the Big Bang, when gravity, instead of attracting objects to each other, reversed itself and repulsed objects from each other instead. This caused the universe to undergo a stupendous growth spurt for a brief period before gravity reversed itself again and the universe settled down into the type of expansion we

see today³. The result of these gravity reversals is that the world does not always expand at an even rate. There was, in the beginning, a period of very rapid expansion due to what is called a negative vacuum. A vacuum creates energy which pushes outwards and would counteract any gravity which pulls in the opposite direction. At a later stage, this vacuum energy got used up and the world slowed down to the type of expansion we see today.

Inflation explained many problems which the standard Big Bang model cannot, including the uniformity of the afterglow of the universes, the fact that space is relatively flat instead of curved⁴

Inserted into Einstein's equations, the latent energy would act as a kind of antigravity, and the universe would blow itself apart, Dr. Guth discovered in a calculation in 1979.

In far less than the blink of an eye, 10-37 second, a speck much smaller than a proton would have swollen to the size of a grapefruit and then resumed its more stately expansion, with all of normal cosmic history before it, resulting in today's observable universe — a patch of sky and stars 14 billion light-years across. All, by the magical-seeming logic of Einstein's equations, from about an ounce of primordial stuff.

"The universe," Dr. Guth liked to say, "might be the ultimate free lunch."

Dr. Guth called his theory inflation. Inflation, as Dr. Guth pointed out, explains why the universe is expanding. Dr. Turner of the University of Chicago referred to it as "the dynamite behind the Big Bang." (Dennis Overbye, NY Times, July, '02)

¹ In the PBS science special: "The Creation of Sandage, who was once a the Universe", student of Hubble and continued most of his career at the Mt. Palomar Observatory continuing Hubble's work was interviewed. Commenting on the scientific fact of the "Big Bang," the beginning of the expansion, he said, "As astronomers, you can't say anything except, 'Here is a miracle, what seems -- what seems almost supernatural -- an event which has come across the horizon into science, through the Big Bang.' Can you go the other way back, outside the barrier? Can you finally find the answer [to the question] 'Why is there something and not nothing?' No, you cannot, not from within science. But it still remains an incredible mystery: Why is there something instead of nothing?"

² Now at MIT

³ A way to understand this is to consider water as it freezes. Under some circumstances, a glass of water can stay liquid as the temperature falls below 32 degrees, until it is disturbed, at which point it will rapidly freeze, releasing latent heat in the process. Similarly, the universe could "supercool" and stay in a unified state too long. In that case, space itself would become temporarily imbued with a mysterious kind of latent heat, or energy.

⁴ If the inflationary theorists are right, the universe we see, the 14 billion light-years, is just a tiny piece of a much vaster universe, or even a whole ensemble of them, forever out of our view. According to the theory, therefore,

and why the universe contains lumps of matter in the form of stars and galaxies¹.

Inflation has some problems and therefore there are a number of different inflation theories, none of which has emerged as the decisive one. (*Scientific American*, June 1997, pg. 15 & 16)

vi-What Happened before the Big Bang?

The Big Bang presumes that there was an explosion from an infinitely dense particle. Where, however, did that first particle come from?

Robert Jastrow writes as follows (pg. 121-5):

"A few scientists bit the bullet and dared to ask, 'What came before the beginning?' Edmund Whittaker, a British physicist, wrote a book on religion and the new astronomy called *The Beginning and End*

our own little patch of the cosmos should appear geometrically "flat," the way a section of a balloon looks flat when viewed close up. This was the universe long thought to be the most beautiful and simple.

¹ The universe does need a tiny bit of lumpiness for matter to gather around and form stars and planets, etc. However, the eveness of the universe is only at a macro level. On the smallest scales, according to quantum theory, nature is lumpy, emitting even energy in little bits and subject to an irreducible randomness. As a result, so-called quantum fluctuations would leave faint lumps in the early universe. These would serve as the gravitational seeds for future galaxies and other cosmic structures.

In 1992, the Cosmic Background Explorer, or COBE, satellite discerned faint blotches in the primordial cosmic radio glow. This was later confirmed by the Hubble Telescope. These were the seeds from which, inflation predicted, large cosmic structures would eventually grow.

"If you're religious, it's like seeing God," said Dr. George Smoot, a physicist from the Lawrence Berkeley National Laboratory who led the COBE team.

of the World, in which he said, 'There is no ground for supposing that matter and energy existed before and was suddenly galvanized into action. For what could distinguish that moment from all other moments eternity?' in Whittaker concluded, 'It is simpler to postulate ex nihilo Divine creation constituting Nature from nothingness.' Some scientists were even bolder and asked, 'Who was the Prime Mover?' The British theorist, Edward Milne, wrote a mathematical treatise on relativity which concluded by saying, 'As to the first cause of the Universe, in the context of expansion, that is left for the reader to insert, but our picture is incomplete without Him.'

"But the views of most physicists and astronomers were closer to that of St. Augustine, who asking himself what G-d was doing before He made Heaven and Earth, gave the reply, 'He was creating Hell for people who asked questions like that.' In fact, some prominent scientists began to feel the same irritation over the expanding Universe that Einstein had expressed earlier. Eddington wrote in 1931, 'I have no ax to grind in this discussion,' but 'the notion of a beginning is repugnant to me ... I simply do not believe that the present order of things started off with a bang ...the expanding Universe, is preposterous ... incredible ... it leaves me cold.' The German chemist, Walter Nernst, wrote, 'to deny the infinite duration of time would be to betray the very foundations of science.' recently, Phillip Morrison of MIT said in a BBC film on cosmology, 'I find it hard to accept the Big Bang theory; I would like to reject it.' And Allan Sandage of Palomar established Observatory, who uniformity of the expansion of the Universe out to nearly ten billion light years, said, 'It is such a strange conclusion ... it cannot really be true.'

"There is a strange ring of feeling and emotion in these reactions. They come from the heart, whereas you would expect the judgments to come from the brain. Why?

"I think part of the answer is that scientists cannot bear the thought of a natural phenomenon which cannot be explained, even with unlimited time and money. There is a kind of religion in science; it is the religion of someone who believes there is order and harmony in the Universe. Every event can be explained in a rational way as the product of some previous event: every event must have its cause: there is no First Cause. Einstein wrote, The scientist is possessed by the sense of universal causation. This religious faith of the scientist is violated by the discovery that the world had a beginning under conditions in which the known laws of physics are not valid and as a product of forces or circumstance we cannot discover. When that happens, the scientist has lost control. If he really examined the implications, he would be traumatized. As usual when faced with trauma, the mind reacts by ignoring the implications - in science this is known as "refusing to speculate" - or trivializing the origin of the world by calling it the Big Bang, as if the Universe were a firecracker.

"Consider the enormity of the problem. Science has proven that the Universe exploded into being at a certain moment. It asks, What cause produced this effect? Who or what put the matter and energy into the Universe? Was the Universe created out of nothing or was it gathered together out of pre-existing material? And science cannot answer these questions, because, according to the astronomers, in the first moments of its existence, the Universe was compressed an extraordinary degree and consumed by the heat of a fire beyond human imagination. The shock of that moment must have destroyed every particle of evidence that could have yielded a clue to the cause of the great explosion. An entire world, rich in structure and history, may have existed

before our Universe appeared; but if it did, science cannot tell what kind of a world it was. A sound explanation maybe exists for the explosive birth of our Universe; but if it does, science cannot find out what the explanation is. The scientist's past ends at the moment of creation.

"... For the scientist who has lived by his faith in the power of reason, the story ends like a bad dream. He has scaled the mountains of ignorance; he is about to conquer the highest peak, as he pulls himself over the final rock, he is greeted by a band of theologians who have been sitting there for centuries."

Since Robert Jastrow wrote these words, the Big Bang has become a part of scientific orthodoxy and scientists have begun to ask themselves what happened Big Bang. before the The fundamental question of why there is something at all evokes wild theorizing (and a lot of poor philosophizing) on the part of physicists who are clearly not trained to think rigorously on these issues and as Jastrow points out, poorly equipped emotionally. But even the simpler issue of just how things came about originally is highly problematic for the scientific community.

Some scientists have stated that since the first particle was a singularity, (see Appendix F-ii Black Holes) all the laws of physics break down and it is therefore beyond the parameters of science. Yet others claim that the Big Bang detonation itself destroyed all possible information about the prior state of the universe, and therefore the question of what came before was moot. Hence Astronomer Royal, Martin Rees of Cambridge University: "I relatively confident science can understand what happened after the first millisecond of creation, because we see the fossils, such as the amount of helium in the universe, and these fossils are roughly what theories predict. But before one millisecond there is a barrier

understanding, where we understand little about what the relevant physics might have been." (*U.S. News and World Report*, July 20, 1998)

Cosmologist Allan Sandage (whom Jastrow quotes): "The most amazing thing to me is existence itself. Why is there something instead of nothing?" This impenetrable mystery, he said, drove him to be a believer. "How is it that inanimate matter can organize itself to contemplate itself? That's outside of any science I know."

To this Stephen Hawking responds: "Some people feel that ... the question of the initial situation (is) a matter for metaphysics or religion. They would say that G-d being Omnipotent, could have started the universe off any way He wanted. That may be so, but in that case He also could have made it develop in a completely arbitrary way. Yet it appears that He chose to make it evolve in a very regular way according to certain laws. It therefore seems equally reasonable to suppose that there are also laws governing the initial state" (A Brief History of Time, pg. 11).

Many scientists have made elaborate theories which show how the universe could have produced something out of nothing. None of these theories have a shred of evidence, the scientists themselves admitting that they are engaged in pure speculation.

Stephen Hawking has proposed a "no-boundary universe", i.e. a universe which is closed in the shape of a sphere only in four dimensions. Such a sphere would be finite (being a sphere it meets up with itself instead of just spreading out, further and further). However, to get over current evidence which seems to point to an open universe, Hawking had to say that the universe is both a sphere, and a horn shape simultaneously, depending on one's point of view (i.e. at what point you took a slice of the universe). But all Hawking gains

with this complicated model is the ability to explain how the laws of physics as we know them today could have applied to the universe from the very beginning. It still does not explain how the first matter got there.

Some theorists let their imagination go further, claiming that there is a concept called a "Mother Universe", a timeless dimension that has always existed and always will, bearing daughter universes down an endless corridor of time. One attempt to do this invokes the inflationary model of the Big Bang. According to this, the inflationary period of the Big Bang came as a result of a (negative) vacuum and the pressure of this vacuum produced the enormous energy which led to the Big Bang. (See iv above - Inflationary Theory.) These theorists use the fact that particles (called virtual particles) often appear to pop out of nowhere in empty space, as well as the similarly non idea of understandable quantum fluctuations. But, this just ends explaining one thing we do not understand (what happened before the Big Bang) with another thing we do not understand. Anything to avoid invoking G-d! Besides which, sudden virtual particles are always tiny and fleeting- hardly the stuff of which Big Bangs are made.

vii-What Happened After the Big Bang?

Scientists propose that the time-line after the Big Bang reads as follows (in years):

- 10 –51 Space and time disentangle
- 10 –44 Cosmic inflation
- 10 –18 Electromagnetism emerges
- 10-5 Atomic nuclei created
- 10 6 First stars form

The great mystery for cosmologists is the series of events that occurred less than one millisecond after the big bang, when the universe was extraordinarily small, hot and dense. The laws of physics with which we are familiar offer little guidance for explaining what happened during this critical period. But to comprehend why the universe was set up this way, we must probe further back, to the very first tiny fraction of a microsecond. Such an effort will require ... [that] physicists find a way to relate Einstein's theory of general relativity, which governs large-scale interactions in the cosmos, with the quantum principles which apply at very short distances. (Martin Rees, Scientific American, Dec. 1999, pg. 47)¹

About half a million years after the Big Bang, the universe cooled and entered the dark ages, which lasted for hundreds of millions of years and ended only when enough stars and galaxies

¹In the recent creation of a quark plasma (described below) scientists have come another step closer to mimicking the Big Bang:

Scientific American April 2000, *Fireballs of Free Quarks*, p. 8:

A quark-gluon plasma (QGP), in which hundreds of ordinary protons and neutrons melt together and form a fiery soup of free-roaming quarks and gluons. The universe consisted of such a quark stew 10 microseconds after the big bang, about 15 billion years ago.

Seven experiments...for the past six years at CERN...use lead nuclei...hurled at almost the speed of light at a thin foil...

Ordinarily, quarks are locked away inside their parent particles...Separating the component quarks of a particle takes a large amount of energy.

sufficiently high densities...Instead of being a hot swarm of numerous hadrons colliding together and reacting, the fireball becomes one large cloud of quarks and gluons. The tremendous energy and pressure of the quark-gluon plasma causes it to explode outward. temperature and density fall and soon become too low to sustain the plasma state. The quarks then rapidly pair off again, forming The fireball, now colorless hadrons. composed of hadrons, continues expanding and cooling, and ultimately the hadrons fly on to the detectors.

The process...mimics what happened during the big bang.

formed so that their light dissipated the fog².

In August 2001, a team of astronomers announced that it had found what it called the cosmic renaissance, the epoch in which starlight first began streaming freely through the universe. The announcement was made a few days after another team reported that it had discovered the cosmic dark ages, a time before stars and galaxies began shining³.

What will happen in the future?

In 1998, two competing teams of astronomers startled the scientific world with the news that the expansion of the universe seemed to be speeding up under the influence of a mysterious antigravity that seems embedded in space itself⁴. The scientists, unable to account for the phenomena, called it "Dark energy." Dark energy, instead of attracting particles like gravity does, would actually repel them⁵.

Like two distant streetlights, one inside a fog bank and one outside, the quasars appear different when observed with powerful telescopes, apparently confirming that the universe went through a major change when it was about 900 million years old.

² Or, in technical terms, ionized the hydrogen gas pervading the universe

³ Both sets of measurements were made by observing parts of the universe whose light is now observable from earth. The Sloan observations looked at that fog in the light of the most distant known object in the universe, a quasar, or cosmic beacon with a brightness equivalent to billions of suns. The quasar seems to have been shining just as the dark ages were ending. By contrast, Dr. Djorgovski's team examined a quasar that is slightly less distant and therefore emitted its light a little more than a hundred million years more recently, after the dark ages apparently ended.

⁴ This is hauntingly reminiscent of Einstein's old, presumably discredited, cosmological constant.

⁵ According to the uncertainty principle, a pillar of quantum theory, empty space was not

If dark energy is real and the acceleration continues, the galaxies will eventually speed away from one another so quickly that they couldn't see one another. The universe would become cold and empty as the continued acceleration sucked away the energy needed for life and thought¹.

Whether the universe will continue expanding indefinitely or whether it eventually changes course and collapse (the big crunch) depends on the total amount of dark (hidden or unidentifiable) matter² (which would pull the universe in)

empty, but rather foaming with the energy of so-called virtual particles as they flashed in and out of existence on borrowed energy. This so-called vacuum energy could repel, just like Einstein's old cosmological constant, or attract. The case for dark energy got even stronger a year later, when the cosmic background observations reported evidence of a flat universe. Because astronomers had been able to find only about a third as much matter, both dark and luminous, as was needed by Einstein's laws to create a flat geometry, something else had to be adding to it.

What is dark energy? The question now hangs over the universe.

Is it really Einstein's old fudge factor returned to haunt his children? In that case, as the universe expands and the volume of space increases, astronomers say, the push because of dark energy will also increase, accelerating the galaxies away from one another faster and faster, leading to a dire dark future. (Dennis Overbye, NY Times, July, '02)

² But what is the dark matter? While some of it is gas or dark dim objects like stars and planets, cosmologists speculate that most of it is subatomic particles left over from the Big Bang.

Many varieties of these particles are predicted by theories of high-energy physics. But their existence has not been confirmed or detected in particle accelerators.

"We theorists can invent all sorts of garbage to fill the universe," Dr. Sheldon Glashow, a Harvard physicist and Nobel laureate, told a gathering on dark matter in 1981.

Collectively known as WIMP's, for weakly interacting massive particles, such particles would not respond to electromagnetism, the

and dark energy (which would pull the univers out) that exists in the universe and the gravity it exerts. There are several indications that dark matter exists³. Many galaxies, for example, are rotating so fast that they would fly apart unless they were

force responsible for light, and thus would be unable to radiate or reflect light. They would also be relatively slow-moving, or "cold" in physics jargon, and thus also go by the name of cold dark matter. (Dennis Overbye, NY Times, July '02)

³ As Earth in its travels passed through the dark-matter cloud that presumably envelops the Milky Way, the particles would shoot through our bodies, rarely leaving a trace, like moonlight through a window. But the collective gravity of such particles, cosmologists say, would shape the cosmos and its contents.

Gathering along the fault lines laid down by random perturbations of density in the early universe, dark matter would congeal into clouds with about the mass of 100,000 Suns. The ordinary matter that was mixed in with it would cool and fall to the centers of the clouds and light up as stars.

The clouds would then attract other clouds. Through a series of mergers over billions of years, smaller clouds would assemble into galaxies, and the galaxies would then assemble themselves into clusters of thousands of galaxies, and so forth.

Using the Hubble and other telescopes as time machines — light travels at a finite speed, so the farther out astronomers look the farther back in time they see — cosmologists have begun to confirm that the universe did assemble itself from the "bottom up," as the dark matter model predicts.

Last year, two teams of astronomers reported seeing the first stars burning their way out of the cloudy aftermath of the Big Bang, when the universe was only 900 million years old. The bulk of galaxy formation occurred when the universe was a half to a quarter its present age, cosmologists say. ...

Yet there are still many questions that the cold dark matter model does not answer. Astronomers still do not know, for example, how the first stars formed or why the models of dark matter distribution don't quite fit in the cores of some kinds of galaxies. Nor have the dark matter particles themselves been unambiguously detected or identified, despite continuing experiments. (Dennis Overbye, NY Times, July, '02)

¹ Dennis Overbye, NY Times, July, '02

being reined in by the gravity of halos of dark matter. Since this matter is unknown and unaccounted for, scientists cannot give a final answer on this.

In a high-density universe, space would be curved or warped around on itself like a ball. Such a universe would eventually stop expanding and fall back together in a big crunch that would extinguish space and time, as well as the galaxies and stars that inhabit them. A low-density universe, on the other hand, would have an opposite or "open" curvature like a saddle, harder to envision, and would expand forever.

In between with no overall warpage at all was a "Goldilocks" universe with just the right density to expand forever but more and more slowly, so that after an infinite time it would coast to a stop. This was a "flat" universe in the cosmological parlance, and to many theorists the simplest and most mathematically beautiful solution of all.

Current estimates are that the universe contains only about 30% of the matter that would be needed to stop the expansion. In fact recent observations of supernovae indicated that the expansion was actually speeding up. astronomers say the observations are evidence of an extra repulsive force that overwhelms gravity on cosmic scales -Albert Einstein called what the cosmological constant.(Martin Rees. Scientific American, Dec. 1999, pg. 46)

One physicist, Dr. Linde² has argued that inflation can occur over and over, spawning an endless chain of universes out of one another, like bubbles within bubbles." The universe inflates on top of itself," Dr. Linde told a physics conference recently. "It's happening right now." Of course all of this is nothing more than intelligent speculation.

Other physicists, however, have pointed out that the theories of modern physics are replete with mysterious force fields, collectively called "quintessence," that might or might not exist, but that could temporarily produce negative gravity and mimic the action of a cosmological constant. In that case, all bets on the future are off. The universe could accelerate and then decelerate, or vice versa as the dark energy fields rose or fell.

A third possibility is that dark energy does not exist at all, in which case not just the future, but the whole carefully constructed jigsaw puzzle of cosmology, might be in doubt. The effects of cosmic acceleration could he mimicked. astronomers say, by unusual dust in the far universe or by unsuspected changes in the characteristics of supernovas over cosmic time. As a result, more groups are joining the original two teams in the hunt for new supernovas and other ways to measure the effects of dark energy on the history of the $universe^3$.

For all the new answers being harvested, some old questions linger, and they have now been joined by new ones.

A flat universe is the most mathematically appealing solution of Einstein's equations, cosmologists agree. But they are puzzled by the specific recipe, large helpings of dark matter and dark energy, that nature has chosen. Dr. Turner called it "a preposterous universe."

But Dr. Martin Rees, a Cambridge University cosmologist, said that the discovery of a deeper principle governing the universe and, perhaps, life, may alter our view of what is fundamental. Some features of the universe that are now considered fundamental — like the exact mixture of dark matter, dark energy and regular stuff in the cosmos — may turn out to be mere accidents of evolution in one out of the many, many universes allowed by eternal inflation.

SCIENCE: Page 95

¹Dennis Overbye, NY Times, July '02

² Dr.Linde is the proponent of a new theory of Inflation, called "chaotic inflation,"

³ Dennis Overbye, NY Times, July, '02

"If we had a theory, then we would know whether there were many big bangs or one," Dr. Rees said. The answers to these and other questions, many scientists suspect, have to await the final unification of physics, a theory that reconciles Einstein's relativity, which describes the shape of the universe, to the quantum chaos that lives inside it.

Such a theory, quantum gravity, is needed to describe the first few moments of the universe, when it was so small that even space and time should become fuzzy and discontinuous.

For two decades, many physicists have placed their bets for quantum gravity on string theory, which posits that elementary particles are tiny strings vibrating in a 10- or 11-dimensional space. Each kind of particle, in a sense, corresponds to a different note on the string.

In principle, string theory can explain all the forces of nature. But even its adherents concede that their equations are just approximations to an unknown theory that they call M-theory, with "M" standing for matrix, magic, mystery or even mother, as in "mother of all theories." Moreover, the effects of "stringy physics" are only evident at energies forever beyond the limits of particle accelerators.

Some string theorists have ventured into cosmology, hoping, to discover some effect that would show up in the poor man's particle accelerator, the sky.

In addition to strings, the theory also includes membranes, or "branes," of various dimensions. Our universe can be envisioned as such a brane floating in higher-dimensional space like a leaf in a fish tank, perhaps with other brane universes nearby. These branes could interact gravitationally or even collide, setting off the Big Bang.

In one version suggested last year by four cosmologists led by Dr. Steinhardt of Princeton, another brane would repeatedly collide with our own. They pass back and forth through each other, causing our universe to undergo an eternal chain of big bangs.

Such notions are probably the future for those who are paid to wonder about the universe.

And the fruits of this work could yet cause cosmologists to reconsider their new consensus, warned Dr. Peebles of Princeton, who has often acted as the conscience of the cosmological community, trying to put the brakes on faddish trends.

He wonders whether the situation today can be compared to another historical era, around 1900, when many people thought that physics was essentially finished and when the English physicist Lord Kelvin said that just a couple of "clouds" remained to be dealt with.

"A few annoying tidbits, which turned out to be relativity and quantum theory," the twin revolutions of 20th-century science, Dr. Peebles said. Likewise, there are a few clouds today like what he called "the dark sector," which could have more complicated physics than cosmologists think.

As for the fate of the universe, we will never have a firm answer, said Dr. Sandage, who was Hubble's proteg and has seen it all. "It's like asking, 'Does God exist?'" he said.

viii-A Narrative Description of the Discovery of the Big Bang

By Tanya Weissman, Moreshet:

In 1913, at the Lowell Observatory in Flagstaff, Arizona, Vesto Melvin Slipher, a P.H.D. in astronomy, was investigating

SCIENCE: Page 96

¹ All the text in italics is edited text from Dennis Overbye, NY Times, July '02

what seemed to be another ordinary galaxy coming into existence. But instead of the stars moving in the regular rotating pattern found in all new forming galaxies, he found that the stars were moving away from earth at speeds ranging up to one million miles per hour. Upon further investigation, Slipher discovered other galaxies in the same vicinity all moving away from earth at amazingly high speeds By 1925, Slipher had discovered 42 galaxies all moving away from earth at tremendously high speeds. He reported his the 1914 findings at American Society meeting Astronomical received a standing ovation. Although the astronomers present weren't exactly sure what Slipher's discoveries meant, they realized it was instrumental in the understanding of the world's beginnings.

In 1916, on the other side of the Atlantic, a young scientist named Albert Einstein published his General Theory of Relativity. These equations solved many science problems of that era. He sent his paper to a Dutch mathematician, Willem de Sitter, who said that the only way Einstein's theory could work, is if the universe exploded and all the galaxies were moving away from a center point at immense speeds. De Sitter wrote to Einstein of his discovery, but received no 1922, In a Russian response. Alexander Friedmann mathematician, arrived at the same expanding-universe studying Einstein's conclusion after equations finding a and simple mathematical error. Friedmann contacted Einstein about his mistake, but Einstein ignored this letter, too.

Because of communication interruptions due to World War I, neither de Sitter nor Friedmann knew of Vesto discovery of the dozens of Slipher's receding galaxies Flagstaff at the Observatory. After the war however, Slipher, de Sitter and Friedmann all shared their findings with Einstein. Einstein resisted their hypothesis of a non-static

universe. He said, "This circumstance of an expanding universe is irritating. To admit such possibilities seems senseless to me." If it would be found that the universe is expanding, it could also be discovered that the energy of the original explosion would never be slowed down by the gravitational pull between expanding stars and planets, proving the expanding model to be true. This would in essence be admitting the existence of a supernatural creative force.

Friedmann continued to pursue the matter and published his findings in the science journal Zeischrift fur Physik, When he succeeded in proving Einstein's error, Einstein finally conceded and stated that Slipher, de Sitter and Friedmann were probably right. Nevertheless, since nothing had yet been proven absolutely, Einstein said "I have not yet fallen in the hands of priests."²

In 1925, at the Mount Wilson Observatory in California. two astronomers Edwin Hubble and Milton Humason discovered that all galaxies within the distance of 100 million light years were all moving away from earth. This was enough to finally prove that the static theory of the universe was incorrect. In 1929, Hubble formulated what was later to be known as Hubble's Law: the farther away a galaxy is, the faster it moves. This was actually one of the ideas predicted by Einstein's theory of relativity. Now both theory and observation pointed to an expanding universe. But again, probably because of its theological implications, Einstein remained stubborn in his belief against a non-static universe. In 1930 Einstein visited Hubble to study his discoveries himself. At the conclusion of the meeting, Einstein reluctantly admitted,

_

¹ Jastrow, "Have Astronomers Found God?" p. 29. New York Times Magazine, June 25 1978.

² Stanley L. Jaki, "From Scientific Cosmology to a Created Universe," in Intellectuals Speak Out About God, Roy Varghese, p.76.

"New observations by Hubble and Humason...make it appear likely that the general structure of the universe is not static." Despite all of this, at the time of his death in 1955, Einstein was not completely sold on the idea of an expanding universe.

In 1965 two employees of Bell Telephone Laboratories, Arno Penzias and Wilson, were working on a Robert problem with a specific ultra-sensitive radio detector. It seemed that no matter which way they pointed the detector, a strange background noise was picked up. After looking into all possibilities, they made a final attempt to fix the problem. They dismantled the whole system and reassembled it, but the same noise, a 3 ("3K degree Kelvin hum hum") continued. Penzias and Wilson began an investigation into this unexplainable "3K" interference. They discovered that this 3K hum can be found in every part of the observable universe, which corroborated what was written in an essay published by a student of Friedmann's student. essay said that echoes of the universe's most recent explosion in the cycle of expansion-contraction, should be detectable in a weak form of radiation at about 5 degrees Kelvin. Upon further studying they found a mathematical error and realized the echo should really be at 3 degrees Kelvin. For discovering the echo of the universe's biggest explosion, The Big Bang, Penzias and Wilson were awarded the Nobel Prize in -.

As a result of the 3K hum discovery, more research on Big Bang theories was conducted. Another hypothesis based on general relativity was that the extra hot temperatures of the universe moments after the Big Bang should have produced a universe made up of 75 percent hydrogen and 25 percent helium. This prediction, too, was confirmed. It was at this point

Jastrow, "Have Astronomers Found God?" p.
 New York Times Magazine, June 25 1978

that the static model of the universe officially collapsed. There were two remaining descriptions possible of the nature of the universe the oscillating model and the expanding model. deciding factor is the relationship between the gravitational force between receding planets and stars (G) and the force of the initial explosion's energy (E). found to be greater than E, then the oscillating model is proven. If G is found to be less than E, then the expanding correct indicating model is involvement of a supernatural creative force

Scientists have derived that the key to this question lies in the degree of density of the universe. If the universe contains about one hydrogen atom per ten cubic feet of space, then that would mean that the (G) is great enough to overcome the explosions energy and eventually cause a contraction of the universe. But if, it is found that there is less than that amount, then (G) is not great enough to overcome (E), indicating that the universe will expand until it eventually burns out.

Between 1965 and 1978, much research was done to measure the density of the universe, all producing the same results: there are not enough hydrogen atoms per ten cubic feet in the universe to create an eventual contraction, the number of missing atoms being in the thousands.

In 1978, Dr. Robert Jastrow, director of the National Aeronautics and Space Administration's Goddard Center for Space Studies, wrote an article in The New called "Have York Times Magazine Astronomers Found God? ". After researching and investigating all possibilities of where the 'missing' atoms could be, he came to a conclusion quite shocking for a self-claimed agnostic: that the expanding model is probably correct. He explained that the total weight of the universe was "still more than ten times too

small to bring the expansion...to a halt."

He describes the frustration of scientists upon studying the latest discoveries:

"For the scientist who has lived by his faith in the power of reason, the story ends like a bad dream. He has scaled the mountains of ignorance; he is about to conquer the highest peak; as he pulls himself over the final rock, he is greeted by a band of theologians who have been sitting there for centuries."²

After his essay was published, Jastrow disappeared from the science scene. He had become a devout Christian.

Confirmations of Jastrow's discovery followed. First in 1983, by Dr. James Trefil a physicist at University of Virginia, then in 1986 by Dr. John Barrow, an astronomer at the University of Sussex and Dr. Frank Tipler, a mathematician and physicist at Tulane University. In 1988, Dr. Stephen Hawking, a mathematician and theoretical physicist at Cambridge University made the same confirmation and said: "Many people do not like the idea that time has a beginning, probably because it smacks of divine intervention." He continued: "The present evidence suggests that the universe will probably expand forever."³ Tipler, too, became religiously inclined and formed his own religion in which he proved the afterlife through physics. At the 1990

meeting of the American Astronomical Society, Prof. John Mather, an astrophysicist of Colombia University made a presentation making staggering comparisons between cosmology and the book of Genesis. He received a standing

ovation for his work and it was called "the most dramatic support ever" in favor of the expanding universe. The chairman of the A.A.S. meeting, Dr. Geoffrey Burbidge said about Mather's presentation: "It seems clear that the audience is in favor of the book of Genesis – at least the first verse or so, which seems to have been confirmed."

... In 1998, Allan Sandage, a leading astronomer of our day said that after contemplating the depth of the Big Bang, he realized that creation is a miracle and became a believer in God.

As a result of this century's cosmological advances, we see how the once clear lines between science and religion have been blurred. Jastrow, Tipler and Sandage are only a few examples of scientific figures who've crossed these lines. Not only can it be said that science and religion no longer need to oppose one another, we can even say that they work together with each other. Science is a means by which to discover God.

The irony of this 20th breakthrough, is that the Jewish People have understood this all along. example, the very first instruction given to the Jewish people by God was the sanctification of the new lunar month: "This month shall be for you the beginning of the months."⁶ The sanctification of the month requires intricate knowledge of the relationship between the solar and lunar Jews were thus required to calendars. have deep understanding in this scientific area in order to set the Jewish calendar which is the foundation of the Jewish religion.

¹ Jastrow, "Have Astronomers Found God?" p. 55. New York Times Magazine, June 25 1978 p.132.

Jastrow, "Have Astronomers Found God?" p.
 New York Times Magazine, June 25 1978 p.29

³ Stephen Hawking, A Brief History of Time, p. 46. N.Y. Bantam Books, 1988.

⁴ David Chandler, "Satellite's New Data Smoothly Supports Big Bang Theory," Boston Sunday Globe, January 14, 1990.

⁵ Ibid.

⁶ Exodus 12:2 6

Jews were taught by God that science is part of being religious. For the Jewish people, science is a way of discovering, understanding and relating to God. Science is how we see God in this world and come closer to Him. After centuries of the Jews knowing this, the world seems to be catching on.

ix – Is the Universe still expanding and how will it end?¹

¹ Before the discovery of the Big Bang the following scenarios about the unfolding of the universe were possible: 1. The static model states that all stars and planets basically sit still in space, or at least don't follow a specific orbiting pattern. According to this theory, such a universe could have existed forever,

without the involvement of God, or it could just as well have been created by God at some point in history.

- The oscillating model states that the universe maintains a cycle of expansion and contraction. The cycle begins with a ball containing all matter and energy exploding causing the universe to expand. Eventually, the gravitational pull between the receding stars and planets begins to slow down the force of the explosion, causing the stars and planets to contract back to the center. This leads to what physicists call "the Big Crunch". History might end there or it may lead to the next explosion. In the latter case the universe may continue expanding and contracting infinitely. We might also say that this process has always been going on, back to infinity. An infinite process has neither an end point nor a beginning point. Therefore, we can conclude that such a universe always existed, excluding the hand of God.
- 3. The Expanding Model describes the universe as having exploded from a ball containing all matter and energy, as in the oscillating model above. In this model, however, the energy of the gravitational pull between receding stars and planets (G) never overpowers the energy released by the initial explosion (E) to slow it down and cause a contraction. Therefore, the universe will be in a constant state of expansion until eventually, the stars will burn out and there is no next explosion to restart the universe. However,

General relativity predicted that the very high temperatures moments after the Big Bang should have produced mass amounts of certain elements. The universe should be made up of 75 percent hydrogen and 25 percent helium.

This prediction, too, was confirmed. It was at this point that the static model of the universe officially collapsed. There were two possible descriptions of the nature of the universe left, the oscillating model and the expanding model². Scientists have derived that the key to this question lies in the degree of density of the universe³. Fifteen years of this research produced the same results: there are not enough hydrogen atoms in the universe to

there is a problem that arises due to the nature of the model. How could a ball of all matter and energy sitting peacefully in space suddenly explode? The Law of Inertia clearly states that something at rest will remain at rest unless acted upon by an outside force. Since everything is contained within this ball of matter, something outside the ball had to have acted upon the ball in order to cause it to explode. In order for this description of the universe to be true, we are forced to say that there must be some sort of supernatural creative force.

- ² The deciding factor between the two theories is the relationship between the gravitational force between receding planets and stars (G) and the force of the initial explosion's energy (E). If G is found to be greater than E, then the oscillating model is proven. If G is found to be less than E, then the expanding model is proven indicating the involvement of a supernatural creative force.
- ³ If the universe contains about one hydrogen atom per ten cubic feet of space, then that would mean that the (G) is great enough to overcome the explosions energy and eventually cause a contraction of the universe. But if, however, it is found that there is less than that amount, then (G) is not great enough to overcome (E), which means that the universe will expand until it burns out. Between 1965 and 1978, much research was done to measure the universe's density.

create an eventual contraction. In 1978, Dr. Robert Jastrow director of the National Aeronautics and Space Administration's Goddard Center for Space Studies, wrote article in The New York Times called "Have Astronomers Magazine Found God?." After researching and investigating all possibilities of where the 'missing' atoms could be, he came to a shocking for a self conclusion quite claimed agnostic. He said that it seemed to him, that the expanding model is probably correct. He explained that the total weight of the universe was "still more than ten times too small to bring the expansion...to a halt." He described the frustration of scientists upon studying the latest discoveries: "For the scientist who has lived by his faith in the power of reason the story ends like a bad dream. He has scaled the mountains of ignorance; he is about to conquer the highest peak; as he pulls himself over the final rock, he is greeted by a band of theologians who have been sitting there for centuries."²

After his essay was published, Jastrow disappeared from the science scene. He had become a devout Christian. Confirmations of Jastrow's discovery followed³.

¹ In 1997, at the American Astronomical Society meeting, an astronomer from Princeton University, Ruth Daly, announced that while conducting a spectral analysis of the stars, she discovered with 97.5% accuracy that E is greater that G. Therefore there is no chance the universe will ever fall back on itself.

In 1988, Dr. Stephen Hawking, a mathematician and theoretical physicist at Cambridge University made the same confirmation and said, "Many people do not like the idea that time has a beginning, probably because it smacks of divine intervention." He continued, "The present evidence suggests that the universe will probably expand forever." At the 1990 meeting of the American Astronomical Society, Prof. John Mather. astrophysicist of Colombia University made a presentation making staggering comparisons between cosmology and the book of Genesis. He received a standing ovation for his performance and it was called "the most dramatic support ever" in favor of the expanding universe. chairman of the A.A.S. meeting, Dr. Geoffrey Burbidge said about Mather's presentation, "It seems clear that the audience is in favor of the book of Genesis - at least the first verse or so, which seems to have been confirmed."4

But there were more surprises to come. For it turned out that the universe is even emptier than expected. As a result of this, the universe is not only not slowing down; in fact recent measurements indicate that it may be speeding up. Cosmologists currently think that the world will expand forever rather than, as scientists once thought, expand to a maximum and then begin to shrink, ending in a big crunch.⁵

² Jastrow, "Have Astronomers Found God?" p 29. New York Times Magazine, June 25 1978

³ First in 1983, by Dr. James Trefil a physicist at University of Virginia, then in 1986 by Dr. John Barrow, an astronomer at the University of Sussex and Dr. Frank Tipler, a mathematician and physicist at Tulane University. Tipler, too, became religiously inclined and formed his own religion in which he proved afterlife through physics.

⁴ (David Chandler, "Satellite's New Data Smoothly Supports Big Bang Theory," Boston Sunday Globe, January 14, 1990.)

⁵ (Sc. American, Jan. '99. Pg. 28, Nov. '99 pg. 38)

U.S. News & World Report, Aug 18th 1997:

Astronomers cannot measure the universe's age directly. But we can try to pin down the expansion rate of the universe over time and from their conclude its age. TO do this we have to measure the speed at them by the distance. (This will yield the Hubble constant.) Speed can be measured fairly accurately by observing the spectrum of light emitted from the galaxy, The more the colors are shifted to the longer wavelengths – toward the red – the faster the galaxy is moving.

Calculating distance, however, turns out to be extremely difficult. It involves many indirect measurements and each one can introduce uncertainties and errors. Firstly you have to know how bright a star really is. Astronomers have been searching for what they call "standard candles" that can serve as these reference points. Hubble relied on a class of stars called cepheid variables, stars which are several times larger than the sun. They have a regular pattern where they get brighter and then dimmer lasting between two and a hundred days. The absolute brightness of these stars can be calculated because of some basic physical laws which tie brightness to pulsation rate.

The problem is that cepheids are a useful candle only for nearby galaxies, within about 80 million light-years. Brighter stars are needed for more distant points. So other stars and other forms of measurement are now being attempted, although there is no consensus on the method. One such class of star is the supernovae, and it was measurement of this which lead to the recent theory (1998) that the universe is not only still expanding but that that expansion is actually accelerating. However, Scientific American Oct 1999 (pgs. 18-19) reported new doubts on whether cosmic expansion is accelerating.

The arguments for cosmic acceleration depend on two key measurements of supernovae: the brightness of the explosion, which shows how far away it is and hence when it took place; and the red-shift, which records how much the universe has expanded since it occurred. The furthest known supernovae went off 8.4 billion years ago, and since then the universe has doubled in size. Yet, at its current expansion rate (as inferred by the more recent supernovae) the universe would have tripled in size. Therefore, the expansion rate must have increased.

However, recently researchers have noticed that nearby supernovae took nearly 20 days to reach peak brilliance, whereas those far off took only 17.5 days. Therefore, it seems that stellar explosions unfold differently depending on how long ago they occurred. Besides, since supernovae differ in brightness, the various formula which are used to compensate for this natural variation in brightness, generate slightly different values. There is much discussion about what these problems might mean, with some scientists saying that the recent conclusions about an accelerated expansion of the universe are unfounded.

¹A series of discoveries, 2001 has gone a long way toward settling the question once and for all². One of the

U.S. News and World Report, May 6, 2002:

A few cosmologists are reviving the idea of a cosmos with infinite rounds of rebirth. Dubbed the cyclic universe, it echoes a 1930s proposal that had our expanding universe eventually falling back on itself and bouncing into a new round of creation. But physicists saw no way to make that version bounce repeatedly. The new one relies on exotic ideas called string theory and M-theory, which hold that our universe may occupy just part of a many-dimensional mega —universe. In that picture, it could be shadowed by another universe on a different "brane"-M-theory jargon for a 3-D membrane.

Paul Steinhardt of Princeton University and Neil Turok of the University of Cambridge propose in *Science* that an invisible force is at work in both universes-the same force that may explain astronomers' recent discovery that cosmic expansion is speeding up. After operating for trillions of years and thinning both universes almost to nothingness, Steinhardt and Turok say, the force field would sweep the branes together. The two universes collide, unleashing energies that drive a new expansion and spawn a new generation of galaxies.

While layered in dense math, the theory "cuts to the heart of questions that we have all wondered about," says Steinhardt. The current picture of the universe includes two episodes of weird growth: inflation, in which the cosmos balloons to astonishing size in its first fraction of a second, "flattening" space so light travels in straight lines; and today's accelerating expansion. The cyclic model makes do with just one, the ongoing cosmic speedup.

Many theorists are intrigued. But to some it is even more complicated and less attractive mathematically than standard theory. Stanford's Andrei Linde scoffs, "They are trying to replace the big bang. I call their idea brane damage."

¹ What appears below How the Universe Will End modified from an article by Michale D. Lemonick, Time Magazine, June, 20001

² The particulars of these discoveries also bolster the theory of inflation: the notion that

implications of these recent discoveries is that the universe is pervaded with a strange sort of "antigravity," a concept originally proposed by and later abandoned by Einstein as the greatest blunder of his life. This force, which has lately been dubbed "dark energy," isn't just keeping the expansion from slowing down, it's making the universe fly apart faster and faster all the time, like a rocket ship with the throttle wide open.

It gets stranger still. Not only does dark energy swamp ordinary gravity but an invisible substance known to scientists as "dark matter" also seems to outweigh the ordinary stuff of stars, planets and people by a factor of 10 to 1. "Not only are we not at the center of the universe," University of California, Santa Cruz, astrophysical theorist Joel Primack has commented, "we aren't even made of the same stuff the universe is."

These mind-bending discoveries raise more questions than they answer. For example, just because scientists know dark matter is there doesn't mean they understand what it really is. Same goes for dark energy. "If you thought the universe was hard to comprehend before," says University of Chicago astrophysicist Michael Turner, "then you'd better take some smart pills, because it's only going to get worse."

It was noted as early as the 1930s that something lurked out there besides the glowing stars and gases that astronomers could see. Galaxies in clusters were orbiting one another too fast; they should, by rights, be flying off into space like untethered children flung from a fast-twirling merry-go-round. Individual galaxies were spinning about their centers too quickly too; they should long since

the universe went through a period of turbocharged expansion before it was a trillionth of a second old, flying apart (in apparent, but not actual, contradiction of Albert Einstein's theories of relativity) faster than the speed of light. have flown apart. The only possibility: some form of invisible dark matter was holding things together, and while you could infer the mass of dark matter in and around galaxies, nobody knew if it also filled the dark voids of space, where its effects would not be detectable.

1998 scientists By knew something very weird was happening. The cosmic expansion should have been slowing down a lot or a little, depending on whether it contained a lot of matter or a little—an effect that should have shown up as distant supernovas, looking brighter than you would expect compared with closer ones. But, in fact, they were dimmer—meaning that the expansion was speeding up. This suggested that some sort of powerful antigravity force was at work, forcing the galaxies to fly apart even as ordinary gravity was trying to draw them together¹.

This was supported by theoretical equations of quantum physics that suggested that the seemingly empty vacuum of space should be seething with a form of energy that would act just like Einstein's disowned antigravity², and it

A decade later, though, Edwin Hubble discovered that the universe was expanding after all. Einstein immediately and with great relief discarded the cosmological constant, declaring it to be the biggest blunder of his life. (If he had stuck to his guns, he might have nabbed another Nobel.)

¹ For all its seeming strangeness, antigravity did have a history, one dating back to Einstein's 1916 theory of general relativity. The theory's equations suggest that the universe must be either expanding or contracting; it couldn't simply sit there. Yet the astronomers of the day, armed with relatively feeble telescopes, insisted that it was doing just that. Grumbling about having to mar the elegance of his beloved mathematics, Einstein added an extra term to the equations of relativity. Called the cosmological constant, it amounted to a force that opposed gravity and propped up the universe.

² Problem was, this force would have been so powerful that it would have blown the universe

was supported by the discovery of a new supernova existing closer to the time of the Big Bang than anything which had existed before¹

An entirely different kind of observation—the long-standing search for lumpiness in the cosmic background radiation—now suggests independently that dark energy is real. Matter isn't spread evenly through the modern universe. Galaxies tend to huddle relatively close to one another, dozens or even hundreds of them in clumps known as clusters and superclusters. In between, there is essentially nothing at all.

apart before atoms could form, let alone galaxies—which it clearly did not. "The value particle physicists predict for the cosmological constant," admits Chicago's Turner, "is the most embarrassing number in physics."

There were other problems. Maybe the observers didn't really have the supernovas' brightness right; perhaps the light from faraway stellar explosions was dimmed by some sort of dust. The unique properties of a cosmological constant, moreover, would make the universe slow down early on, then accelerate. That's because dark energy grows as a function of space. There wasn't much space in the young, small universe, so back then the braking force of gravity would have reigned supreme. More recently, the force of gravity fell off as the distance between galaxies grew and that same increase made for more dark energy. Nobody had probed deeply enough to find out what was really going on in the distant past.

¹ In 1998 a new supernova was discovered. It was some 50% closer to the beginning of the universe than any supernova known before, was far brighter than had been predicted. The level of brightness signaled that this supernova was shining when the expansion of the cosmos was still slowing down. That neatly eliminated the idea of dust, since a more distant star should have been even more dust-dimmed than nearer ones. "Usually," says Riess, "we see weird things and try to make our models of the universe fit. This time we put up a hoop for the observations to jump through in advance, and they did—which makes it a lot more convincing."

That lumpiness, reasoned theorists, must evolved from some original lumpiness in the primordial cloud of matter that gave rise to the background radiation. Slightly denser knots of matter within the cloud—forerunners of today's superclusters should have been slightly hotter than average. So scientists began looking for subtle hot spots. The lumps themselves were first detected about a decade ago, thanks to the Cosmic Background Explorer satellite. At the time, astrophysicist and cobe spokesman George Smoot declared that "if you're religious, it's like seeing God." More recent, sharper images have confirmed this result², making it clearer than ever that galaxies cluster together into huge clumps that reflect conditions that existed soon after the Big

A statistical analysis shows that the early lumps—actually patches of slightly warmer or cooler radiation—don't come at random but rather at certain fixed sizes

That turns out to be enormously important. Knowing the characteristic sizes and also the temperatures, to a millionth of a

All these measurements pretty much agreed with one another, confirming that the lumps scientists saw were real, not some malfunction in the telescopes. In June, 20001, astronomers from the Sloan Digital Sky Survey confirmed that this primordial lumpiness has carried over into modern times. The five-year mission of the survey, to make a 3-D map of the cosmos, will be completed in 2006

² The original COBE satellite saw lumps but couldn't determine much about them. In April, 2001, though, scientists offered up much sharper images from а balloon-borne called experiment boomerang (Balloon Observations of Millimetric Extragalactic Radiation and Geophysics), which lofted instruments into the Antarctic stratosphere; from another named maxima (Millimeter Anisotropy Experiment Imaging Array, which did the same over the U.S.); and from a microwave telescope on the ground at the South Pole, called dasi (Degree Angular Scale Interferometer).

degree, of these warm and cool regions gives theoretical physicists an important window into the early universe. The cosmic background radiation itself began to shine when the universe was 300,000 years old, but the temperature fluctuations were set in place when it was just a split-second old.

Using this information, physicists have concluded that ordinary matter provides add up to only about 5% of the so-called critical density—what it would take to bring the cosmic expansion essentially to a halt by means of gravity¹. An additional 35% of the needed matter most likely comes in the form of mysterious particles that have been identified only in theory, never directly observed—particles with quirky names like neutralino and axion. These are the mysterious dark matter².

¹ from the equations of nuclear physics and from measurements of the relative amounts of hydrogen, helium and lithium in the universe, that protons, neutrons and electrons (the building blocks of every atom in the cosmos)

The characteristic sizes of the patches of matter also yield another key bit of information: they tell theorists how the universe is curved. The surface of a sphere has what's called positive curvature; if you go far enough in one direction, you will never get to the edge but you will eventually return to your starting point. An infinitely large sheet of paper is flat and, because it's infinite, also edgeless. And a saddle that extends forever is considered edgeless and negatively curved. It also turns out that any triangle you draw on the paper has angles that add up to 180°, but the sphere's angles are always greater than 180°, and the saddle's always less.

Same goes for the universe, but with one more dimension. According to Einstein, the whole thing could be positively or negatively curved or flat (but don't try to imagine in what direction it might be curved; it's quite impossible to visualize). "What the new measurements tell us," says Turner, "is that the universe is in fact flat. Draw a triangle that reaches all the way across the cosmos, and the angles will always add up to 180°."

According to Einstein, the universe's curvature is determined by the amount of matter and energy it contains. The universe we evidently live in could have been flattened

The remaining 60% is comprised of dark energy.

This gives physicists a pretty good idea of the universe's future. All the matter put together doesn't have enough gravity to stop the expansion; beyond that, the antigravity effect of dark energy is actually speeding up the expansion. And because the amount of dark energy will grow as space gets bigger, its effect will only increase.

That means that the 100 billion or so galaxies we can now see though our telescopes will zip out of range, one by one. Tens of billions of years from now, the Milky Way will be the only galaxy we're directly aware of (other nearby galaxies, including the Large Magellanic Cloud and the Andromeda galaxy, will have drifted into, and merged with, the Milky Way).

By then the sun will have shrunk to a white dwarf, giving little light and even

purely by matter—but the new discoveries prove that ordinary matter and exotic particles add up to only about 35% of what you would need. Ergo, the extra curvature must come from some unseen energy—just about the amount, it turns out, suggested by the supernova observations. "I was highly dubious about dark energy based only on supernovas," says Princeton astrophysicist Edwin Turner (no relation to Michael, though the two often refer to each other as "my evil twin"). "This makes me take dark energy more seriously." The flatness of the universe also means the theory of inflation has passed a key test. Originally conceived around 1980 (in the course of elementary-particle, astronomical, research), the theory says the entire visible universe grew from a speck far smaller than a proton to a nugget the size of a grapefruit, almost instantaneously, when the whole thing sec. old. This turbo-expansion was driven by something like dark energy but a whole lot stronger. What we call the universe, in short, came from almost nowhere in next to no time. Says M.I.T.'s Alan Guth, a pioneer of inflation theory: "I call the universe the ultimate free lunch." One of the consequences of inflation. predicted 20 years ago, was that the universe must be flat—as it now turns out to be.

less heat to whatever is left of Earth, and entered a long, lingering death that could last 100 trillion years—or a thousand times longer than the cosmos has existed to date. Finally, all that will be left in the cosmos will be black holes, the burnt-out cinders of stars and the dead husks of planets. The universe will be cold and black. University of Michigan astrophysicist Fred Adams predicts that all this dead matter will eventually collapse into black holes. By the time the universe is 1 trillion trillion trillion trillion trillion vears old, the black holes themselves will disintegrate into stray particles, which will bind loosely to form individual "atoms" larger than the size of today's universe. Eventually, even these will decay, leaving a featureless,

infinitely large void. And that will be that—unless, of course, whatever inconceivable event that launched the original Big Bang should recur, and the ultimate free lunch is served once more.

None of the discoveries about dark matter, dark energy and the flatness of space-time have been confirmed to the point where scientists will accept this picture without reservation. "We're really living dangerously," says Chicago's Turner. There could be surprises to come: an Einstein-style cosmological constant, for example, is the leading candidate for dark energy, but it could in principle be something subtly different—a force that could even change directions someday, to reinforce rather than oppose gravity.

APPENDIX B: THE FOUR FORCES AND THE ATTEMPT TO UNIFY THEM

i-Gravity

ii-The Electromagnetic Force

iii-The Strong Force

iv-The Weak Force

v-One force from four

vi-A Fifth Force

APPENDIX B: THE FOUR FORCES AND THE ATTEMPT TO UNIFY THEM

There are four fundamental forces in the world which account for all of physical reality:

Gravity

Electromagnetism

The Strong Force which holds atoms together

The Weak Force the main expression of which is radiation

These force are constants. However, in August 2001, an international team of astrophysicists reported that the basic laws of nature as understood today may be changing slightly as the universe ages, a surprising finding that could rewrite physics textbooks and challenge fundamental assumptions about the workings of the cosmos¹.

If confirmed, the finding could mean that other constants regarded as immutable, like the speed of light, might also have changed over the history of the cosmos².

¹ The researchers used the world's largest single telescope to study the behavior of metallic atoms in gas clouds as far away from Earth as 12 billion light years. The observations revealed patterns of light absorption that the team could not explain without assuming a change in a basic constant of nature involving the strength of the attraction between electrically charged particles.

² James Glanz and Dennis Overbye reported the following in the NY Times:

The work was conducted by scientists in the United States, Australia and Britain and was led by Dr. John K. Webb of the University of New South Wales in Sydney, Australia. It is to be published on Aug. 27 in the field's most prestigious journal, Physical Review Letters.

Scientists who have examined the paper have not been able to find any obvious flaws. But because the consequences for science would be so far-reaching and because the differences from the expected measurements are so subtle, many scientists are expressing skepticism that the discovery will stand the test of time, and say they will wait for independent evidence before deciding whether the finding is true

On the other hand, the finding would fit with some theorists' new views of the universe, particularly the prediction that previously unknown dimensions might exist in the fabric of space.

Even scientists on the project have been deliberately cautious in presenting their result. Describing the implications of what his team observed, Dr. Webb said, "It's possible that there is a time evolution of the laws of physics."

Dr. Webb added, "If it's correct, it's the result of a lifetime."

Dr. Rocky Kolb, an astrophysicist at the Fermi National Accelerator Laboratory who was not involved in the work, said the finding could not only force revisions in cosmology, the science of how the universe began and later evolved, but also add credence to an unproven theory of physics called string theory, which predicts that extra dimensions exist.

"The implication, if it is true, would just be so enormous that it's something people should look at and take seriously," Dr. Kolb said. "This would upset the apple cart."

The magnitude of the change apparently observed by the group is minute, amounting to just 1 part in 100,000 in a number called the fine structure constant over 12 billion years. That constant, also referred to as alpha, is defined in terms of more familiar quantities like the speed of light and the strength of electronic attractions within atoms.

But even that small change would rock physics and cosmology, said Dr. Sheldon Glashow of Boston University, who received a Nobel Prize in physics in 1979. The importance of such a discovery, Dr. Glashow said, would rank "10 on a scale of 1 to 10."

Considering the unexpected nature of the finding, both Dr. Glashow and Dr. Kolb said the chances were high that some more mundane explanation for the results would turn up.

Dr. John Bahcall, an astrophysicist at the Institute for Advanced Study in Princeton, N.J., said the complicated analysis that was required to infer the tiny changes from the

observations could — in principle, at least — be obscuring possible errors.

"The effect does not scream out at you from the data," Dr. Bahcall said. "You have to get down on all fours and claw through the details to see such a small effect."

But others said that the team had been very careful and that any unknown source of error would have to be extremely subtle to be missed

"If they were claiming anything less dramatic, probably most people would find their work very careful and believable," said Dr. Massimo Stiavelli, an astrophysicist at the Space Telescope Science Institute in Baltimore.

"Exceptional results deserve extraordinary proof," Dr. Stiavelli said, adding that he was reserving judgment until further evidence became available.

The work relied on observations of light from distant beacons called quasars, which shine with a brightness equivalent to billions of suns. The light is probably emitted by matter torn from young galaxies by the powerful gravity of a black hole.

Besides Dr. Webb, the team included three other scientists at the University of New South Wales, Michael T. Murphy, Dr. Victor V. Flambaum, and Dr. Vladimir A. Dzuba; and one physicist at Cambridge University in Britain, Dr. John D. Barrow. Three American astronomers who are experts on quasars were also members of the team: Dr. Christopher W. Churchill of Pennsylvania State University; Dr. Jason X. Prochaska of the Carnegie Observatories; and Dr. Arthur M. Wolfe of the University of California at San Diego.

The observations, made by the 30- foot-wide Keck Telescope on Mauna Kea, in Hawaii, looked in detail at the absorption of quasar light by gas clouds in deep space between Earth and the quasars. Metal atoms like zinc and aluminum are often present in trace amounts in the clouds.

The absorption of light by such atoms creates dark spikes at various wavelengths in the quasar's spectrum, with a pattern so well defined that it is often likened to a fingerprint. The value of those wavelengths is directly related to the value of the fine structure constant

But the fingerprint seemed to change in time, Mr. Murphy said, indicating that the constant grows larger as one goes nearer to the present and was not really constant.

"What we have found is that, statistically, there is a difference between the fine structure constant a long time ago and here on earth," he said.

i-Gravity

Although we are most familiar with gravity, it is actually the weakest of the four forces, too weak in fact to even be taken into account when dealing at a subatomic level. The reason that gravity

Far from being of interest only in understanding atomic behavior, said Dr. Barrow of Cambridge University, the effect would be important "because it gives you such a feedback into fundamental physics."

theory. for example, accommodate changes in quantities that accepted physics theory considers immutable. String theorists postulate that space contains tiny, unseen dimensions. Any change in the size of those dimensions — much like the expansion of the universe in the space we are familiar with — could change quantities like the fine structure constant, said Dr. Paul Steinhardt, a physicist at Princeton University. Dr. Steinhardt said most theorists would have expected those changes to have occurred in the first seconds of the universe's life and be virtually unobservable by astronomers today. Still, he pointed out that several years ago, other astronomers unexpectedly found that the present universe is apparently filled with a mysterious kind of energy that counteracts gravity on large scales. Perhaps the two effects are somehow related, Dr. Steinhardt said.

Other scientists pointed out that geologic processes, like naturally occurring nuclear fission, have been used to determine that the fine structure constant has probably changed little over the past two billion years on Earth. But researchers on the new paper point out that their results reach back much farther in time, and that interpreting the geological results is also a complicated matter.

But a few physicists, like Dr. Jacob D. Bekenstein of Hebrew University in Israel, noted that some theories have long been predicting a change in some of nature's apparent constants. Dr. Bekenstein called the findings "potentially revolutionary" and said he was inclined to believe them.

"After much thinking about this issue," Dr. Bekenstein said, "I think the quasar observations may have found the real variation."

seems so strong to us is that it is a cumulative force. For example, each atom of the earth adds its bit of gravitational pull on the moon to make up what we see as the earth's gravitation. The bigger the object, the more gravity it has. Gravity then, is the main force which keeps the planets, the galaxies and everything in the heavens together. The other forces do not operate cumulatively and therefore their primary expression is at a subatomic level. The weak force is much stronger than the gravitational force but weaker (hence its name) than the electromagnetic force which in turn is much weaker than the strong force.

According to Einstein, gravity just reflects curvatures in space. (actually space-time, since time and space can never be separated) according to actually curved. Einstein. is curvature, or warping, is caused by the distribution of mass and energy within space-time. In the vicinity of a massive body, the curvature of space increases. The more massive the body, the greater the curvature.

Objects flying through space will naturally choose the shortest route to move in. When an object is going through a curved space, the shortest route may appear to us to be curved. For example, an airplane flying the shortest route between two points on the globe will appear to fly in a curved route. Stephen Hawking says this is like watching a plane flying over hilly ground. Although it follows a straight line in three-dimensional space, its shadow follows a curved path on two-dimensional ground. Since space-time is actually four dimensional, an object moving through space-time in the shortest route may nevertheless appear us to be following a curved route. We interpret this as gravity. Gravity, then, simply reflects the change of the shortest route through curved space an object might take.

Einstein's theory has been confirmed (and Newton shown to be wrong) in a

number of ways. The exact orbit of Mercury, for example, follows the route predicted by Einstein but not by Newton. However, gravitational waves have never been measured directly. A massive effort is currently underway, involving expensive machines in several places around the world¹, to measure the faint gravitational ripples that ought to be produces by giant cataclysms in the cosmos such as blackhole collisions². These are so large that they are thought to cause the fabric of space itself to vibrate. By the time they reach the earth, however, these ripples are so faint that picking them up is comparable to noticing a single grain of sand added to all the beaches of Long Island, N.Y.³

ii-The Electromagnetic Force

Originally, it was thought that magnetism and electricity were separate forces. In the first century, however, James Clark Maxwell showed that they were both different expressions ofone force. which electromagnetism. This force holds the electrons in place around the nucleus and it holds the atoms in place together with their neighbors. What we know as solid mass is actually mainly empty space. It is the electromagnetic force that creates the

¹ Ligo in Livingston and Hanford, USA; Tama in Japan; Geo in the UK; and Virgo in Italy. Nasa and the European Space Agency are designing a group of laser-toting satellites that will help in the search. They are due to be launched in 2011.

² A gravitational wave ought to expand the space between the mirrors of these machines. The wave should hit each detector at a slightly different time, allowing astronomers to pinpoint the source and eliminate other causes of the vibration. The main problem is that these ultrasensitive devices pick up a lot of other noises, such as traffic and far away earth quakes.

³ Scientific American, April 2002.

impression of something being solid. What should happen when you bang the table is you should squash the few solid electrons and protons into a smaller space. The electromagnetic force is strong enough to prevent that from happening. It is this force which also determines the melting and boiling points of different substances. Although the electromagnetic force can theoretically operate at any distance, in practice, positive and negative charges usually balance each other out (an atom for example is always electrically neutral), so that this force only operates at short distances. Light is also a function of this There is a spectrum electromagnetic energy. A small part of this spectrum (energy range) produces visible light, the rest, ultraviolet and other forms of invisible light.

iii-The Strong Force

The nucleus of the atom is composed of neutrally charged neutrons and positively charged protons. Since like charges repel each other (which you can show by holding two magnets with their like poles together), the question arises why don't the protons cause the nucleus to blow apart. (The neutrons only neutralize this force marginally). The answer is that a force, the strong force, much greater than the repelling electromagnetic force, is holding the nucleus together.

The Strong Force compared to the Electromagnetic Force

Electrons are held in their orbitals around atoms by the electromagnetic force, which is relatively weak. The dominant force inside nuclei is bout 100 times stronger (hence the name: the strong nuclear force). In addition, electrons are structureless elementary particles, whereas protons and neutrons are themselves

complex bundles of particles called quarks and gluons. The force between these nucleons is not directly a fundamental force like electromagnetism, whose equations we know exactly. Instead the nuclear force acting between nucleons is a complicated by-product of the interactions of their constituent quarks and gluons. The nuclear force is strongly attractive for a few femtometers (10-15th meter) and then falls to zero. In contrast, electron orbitals lie some 10,000 times farther away.

One hundred trillion (10-14th) times denser than water, nuclei (*a*) are very tightly packed bundles of protons and neutrons. Because of the strength and complexity of the strong nuclear force that holds nuclei together, physicists have long resorted to approximate models to describe the quantum states of nuclei.

Over the decades physicists have developed many theoretical models to try to describe it. The different models tend to work best for specific classes of nuclei.

iv-The Weak Force

This is the force which causes decay, for example of a neutron into a proton, electron and neutrino. We experience the weak force when we see radiation and most spectacularly, when there is a supernova explosion of some star in the galaxy. In a stable system, the weak force is too swamped by the strong and electromagnetic forces to express itself.

v-One force from four

(GUTs, TOE, Strings and supersymmetry)

As we said above, There are four fundamental forces in the world which account for all of physical reality:

Gravity

Electromagnetism

The Strong Force which holds atoms together

The Weak Force the main expression of which is radiation

For the last 40 or so years, scientists have been trying to combine these four forces into one. This is the force which they believe existed at the beginning of the Big Bang (and which could exist at very, very high temperatures today) and from which the four forces emerged as the universe cooled off. This is considered the biggest challenge in physics today.

the early 1970's In electromagnetic force was combined with the weak force to create what is known as the electroweak force. Then, in 1973 the electroweak force was combined with the strong force to create what was known as the Grand Unified Force or Grand Unified Theory (GUT). What remains now is to combine the fourth forc gravity, the force with the other three forces. This is more difficult because gravity operates at a macro level, with the other three forces which operate at a micro level. Combining gravity with these forces would create something called Quantum Gravity. By combining the four forces, the two major theories which describe all of reality, Quantum Physics (which describes the and Relativity micro-world) (which describes the macro-world) would also be combined

There is much discussion whether, if successful, there will be anything of any significance left for physicists to do, or whether science will then come to an end, so to speak.

One of the primary goals of physics is to understand the wonderful variety of nature in a unified way. The greatest advances of the past have been steps toward this goal: the unification of terrestrial and celestial mechanics by Isaac Newton in the 17th century; of optics with the theories of electricity and magnetism

by James Clerk Maxwell in the 19th century; of space-time geometry and the theory of gravitation by Albert Einstein in the years 1905 to 1916; and of chemistry and atomic physics through the advent of quantum mechanics in the 1920s [see the illustrations titled Unification and Profoundest Advances.

Einstein devoted the last 30 years of his life to an unsuccessful search for a "unified field theory" which would unite general relativity, his own theory of spacetime and gravitation, with Maxwell's theory of electromagnetism.

At the moment there are two primary theories which describe all of physical reality. The first is the theory of relativity, which describes macro-reality. Gravity is the force that operates this reality. The second is quantum physics which describes the sub-atomic world and is described by the other three forces. These two theories have not been reconciled. Although this does not really matter on a day to day basis because they describe different realities, occasionally, as in discussions of black holes, the two theories rub against each other.

The rubbing can be abrasive. Ouantum theory radicalizes our assumptions about the relationship between observer and observed but pretty much buys into Newton's ideas of space and time. General relativity changes our notions of space and time but accepts Newton's view of observer and observed. This situation is deemed unacceptable by most physicists, and the race is on to find a unifying theory of quantum gravity, sometimes called a Theory of Everything. The idea is that ultimately everything. space and time, like matter and energy, come in quantized, indivisible units and that relationships, rather than things, are the fundamental elements of reality¹.

SCIENCE: Page 112

¹ In his book, *Three Roads to Quantum Gravity*, .Lee Smolin, professor of physics at Pennsylvania State University, describes the

Combining the four forces would automatically combine these two theories as well, although it may also require modifying one or both of them. Therefore, combining the four forces is also called the quantum theory of gravity.

The way to unity lay in the application of quantum mechanics to each one of the four forces in turn. In the late 1960's this achieved with respect to electromagnetic field. This was called quantum electrodynamics (QED). In the early 1970's the electromagnetic force was combined with the weak force to create what is known as the electroweak force. Then, in 1973 the electroweak force was combined with the strong force to create what was known as the Grand Unified Force or Grand Unified Theory (GUT) or more formally the Quantum Field Theory.

Although theoretically three of the four forces had now been combined making for a more unified reality, in some respects this world was becoming more

three most promising approaches to such a theory, all of which operate on the so-called Planck scale of reality, 20 orders of magnitude smaller 0than the atomic nucleus.

One approach applies thermodynamics and information theory to black holes.

Another is string theory, which proposes that the ultimate elements of reality are vibrating linear mathematical entities existing (in one version of the theory) in nine spatial dimensions. String theory has the greatest support amongst the scientific community today. However, since it deals in objects as small as 10 minus 35 of a meterand particle accelrators can only mesaysre things up to 10 minus 19, the theory is hard to prove. Recently, however, scientists have come up with some novel ideas of how to test the theory. (Scientific American, Oct. 2002)

Smolin pushes hard for a third approach, which involves something called quantum loops--quantized elements of spacetime that in their shimmerings evoke everything else, perhaps even strings.

Quantum loop theory proposes that spacetime is a kind of "spin foam," a pure geometry of Planck-scale loops and nodes, that in its "knots, links and kinks" spins out a universe.

complicated, requiring no less than 24 force fields.

An additional problem remains that the theory required the decay of protons. Although the average life-span of a proton is projected as being unbelievably long, a few of them should nevertheless be decaying at any one time. But this has never been observed.

What remains now is to combine gravity, the force which operates at a macro level, with the other three forces which operate at a micro level. Getting the particles which transmit gravity, to obey quantum field theory, which combines the strong, weak and electromagnetic forces, has proven to be impossible. A new theory is clearly required. This theory has been called TOE or Theory Of Everything. combining all four forces into a single equation. In the 1980's, String Theory was the leading candidate to be the TOE. String theory states that the most elementary particle in the universe is an unimaginably tiny string (10 to the power of -33cm) which vibrates in many different modes, just as a violin string might do. The theory is basically pure mathematics of the most complicated sort and cannot, at present, be proven empirically. Recently, the theory has been revived by the addition of a concept called duality, which is a type of symmetry. (Symmetries in nature are essential elements in all attempts to combine the four forces. Therefore, such symmetries under the name go supersymmetry). One variation of the theory talks not of strings but of superstrings. This theory presumes that reality exists in ten dimensions, not only the four (three of space and one of time) which we are used to. This is not something which one can actually picture, but rather emerges from the mathematics involved. According to this way of looking things, all particles were once superstrings which froze out at the time of the Big Bang into the types of particles we

have now. At that time, the ten dimensions curled up into the four dimensions we have today.

One problem with string theories is that there are five competing string theories. Another theory. M-theory, actually manages to combine these four theories into one. According to the theory, besides the four dimensions of space and time, which we normally experience, there are another seven dimensions, for a total of eleven. These other dimensions cannot be directly experienced because they are rolled up in tiny dimensions. The theory posits a force called super-Gravity which replaces ordinary gravity.

At times, string theory has been more in vogue with physicists and at other times, M-theory. Today, however, scientists are showing that M-theory can be translated into string theory.¹

But no one knows how to write down the equations of this theory.

Stephen Weinberg (in *Scientific American*, Dec. 1999) describes two great obstacles which stand in the way of formulating a general theory of all of the forces and all of the matter of the universe. "One is that we do not know what physical principles govern the fundamental theory. ... It seems probable that the fundamental theory is not to be formulated in spacetime at all. ... How can we get the ideas we need to formulate a truly fundamental theory, when this theory is to describe a realm where all intuitions derived from life in space-time become inapplicable?"

"The other obstacle is that even if we were able to formulate a fundamental theory, we might not know how to use it to make predictions that could confirm its validity."

"[One of the difficulties with such a theory is that we can never confirm it

¹ Scientific American, Feb. 1998, pg. 54 - 59; N.Y. Science Times, Sep. 22, 1998. The M in M-Theory has been used to stand for a whole range of imaginative things like magic, mystery, mother, meta, matrix and membrane.

experimentally. The temperatures involved (10¹⁸ GeV) are simply too great. Nor can we look at into the higher dimensions suggested by such a theory. Still it is believed that] we will not have any trouble in recognizing the truth of the fundamental unified theory. The test will be whether the theory successfully accounts for the measured values of the physical constants of the Standard Model, along with whatever other effects beyond the Standard Model may have been discovered by then."

"It is possible that when we finally understand how particles and forces behave at energies up to 10^{18} GeV, we will just find new mysteries, with a final unification as far away as ever. But I doubt it. There are no hints of any fundamental energy scale beyond 10^{18} GeV, and string theory even suggests that higher energies have no meaning."

"The discovery of a unified theory that describes nature at all energies will put us in a position to answer the deepest questions of cosmology: Did the expanding cloud of galaxies we call the big bang have a beginning at a definite time in the past? Is our big bang just one episode in a much larger universe in which big and little bangs have been going on eternally? If so, do what we call the constants of nature or even the laws of nature vary from one bang to another? "

"This will not be the end of physics. It probably won't even help with some of the outstanding problems of today's physics, such as understanding turbulence and high-temperature superconductivity. But it will mark the end of a certain kind of physics: the search for a unified theory that entails all other facts of physical science."

As we explain below in Appendix D - Subatomic Particles, the four forces are transmitted by particles. So ultimately, forces and particles are really the same thing. Therefore a theory which combines

all the four forces is automatically a theory which combines all of matter as well.

Some go even further. Not only is matter just an expression of forces, but these forces are, in turn, just expressions of space-time. When the seven of the eleven dimensions of space-time get curled up very tightly so that we only experience the four remaining dimensions the seven curled up dimensions express themselves as forces. According to this, the world is no more than just space and time.¹

¹ GEORGE JOHNSON (NY Times December 7, 1999) explains this idea in greater detail: Slightly smaller than what Americans quaintly

insist on calling half an inch, a centimeter (one-hundredth of a meter) is easy enough to see. Divide this small length into 10 equal slices and you are looking, or probably squinting, at a millimeter (one-thousandth, or 10 to the minus 3 meters). By the time you divide one of these tiny units into a thousand minuscule micrometers, you have far exceeded the limits of the finest bifocals.

But in the mind's eye, let the cutting continue, chopping the micrometer into a thousand nanometers and the nanometers into a thousand picometers, and those in steps of a thousandfold into femtometers, attometers, zeptometers, and yoctometers. At this point, 10 to the minus 24 meters, about one-billionth the radius of a proton, the roster of convenient Greek names runs out. But go ahead and keep dividing, again and again until you reach a length only a hundred-billionth as large as that tiny amount: 10 to the minus 35 meters, or a decimal point followed by 34 zeroes and then a one.

You have finally hit rock bottom: a span called the Planck length, the shortest anything can get. According to recent developments in the quest to devise a so-called "theory of everything," space is not an infinitely divisible continuum. It is not smooth but granular, and the Planck length gives the size of its smallest possible grains. The time it takes for a light beam to zip across this ridiculously tiny distance (about 10 to the minus 43 seconds) is called the Planck time, the shortest possible tick of an imaginary clock. Combine these two ideas and the implication is that space and time have a structure. What is commonly thought of as the featureless void is built from tiny units, or quanta.

"We've long suspected that space-time had to be quantized," said Dr. Steven B. Giddings, a theorist at the University of California at Santa Barbara. "Recent developments have led to some exciting new proposals about how to make these ideas more concrete." The hints of graininess come from attempts to unify general relativity, Einstein's theory of gravity, with quantum mechanics, which describes the workings of the three other forces: electromagnetism and the strong and weak nuclear interactions. The result would be a single framework -- sometimes called quantum gravity -- that explains all the universe's particles and forces.

The most prominent of these unification efforts, superstring theory, and a lesser-known approach called loop quantum gravity, both strongly suggest that space-time has a minute architecture. But just what the void might look like has physicists straining their imaginations. As Dr. John Baez, a theorist at the University of California at Riverside put it: "There's a lot we don't know about nothing."

Since the days of ancient Greece, some philosophers have insisted that reality must be perfectly smooth like the continuum of real numbers: pick any two points, no matter how close together, and there is an infinity of gradations in between. Others have argued that, on the smallest scale, everything is surely divided into irreducible units like the so-called natural or counting numbers, with nothing between, say, 3 and 4.

The development of modern atomic theory, in the 19th century, pushed science toward viewing the universe as lumpy instead of smooth. At the beginning of this century, sentiments swung further in that direction when Max Planck found that even light was emitted in packets. From that unexpected discovery emerged quantum field theory, in which all the forces are carried by tiny particles, or quanta -- all, that is, except gravity.

This force continues to be explained, in entirely different terms, by general relativity: as the warping of a perfectly smooth continuum called space-time. A planet bends the surrounding space-time fabric causing other objects to move toward it like marbles rolling down a hill.

Scientists have long assumed that unification would reveal that gravity, like the other forces, is also quantum in nature, carried by messenger particles called gravitons. But while the other forces can be thought of as acting within an arena of space and time, gravity *is* space-time. Quantizing one is tantamount to quantizing the other.

It is hardly surprising that space-time graininess has gone unnoticed here in the macroscopic realm. Even the tiny quarks that make up protons, neutrons and other particles are too big to feel the bumps that may exist on the Planck scale. More recently, though, physicists have suggested that quarks and everything else are made of far tinier objects: superstrings vibrating in 10 dimensions. At the Planck level, the weave of space-time would be as apparent as when the finest Egyptian cotton is viewed under a magnifying glass, exposing the warp and woof.

It was Planck himself who first had an inkling of a smallest possible size. He noticed that he could start with three fundamental parameters of the universe -- the gravitational constant (which measures the strength of gravity), the speed of light, and his own Planck's constant (a gauge of quantum graininess) -- and combine them in such a way that the units canceled one another to yield a length. He was not sure about the meaning of this Planck length, as it came to be called, but he felt that it must be something very basic.

In the 1950's, the physicist John Wheeler suggested that the Planck length marked the boundary where the random roil of quantum mechanics scrambled space and time so violently that ordinary notions of measurement stopped making sense. He called the result "quantum foam." "So great would be the fluctuations that there would literally be no left and right, no before and no after," Dr. Wheeler recently wrote in his memoir, "Geons, Black Holes and Quantum Foam" (Norton, 1998). "Ordinary ideas of length would disappear. Ordinary ideas of time would evaporate."

Half a century later, physicists are still trying to work out the bizarre implications of a minimum length. In superstring theory, a mathematical relationship called T duality suggests that one can shrink a circle only so far. As the radius contracts, the circle gets smaller and smaller and then bottoms out, suddenly acting as though it is getting bigger and bigger. "This behavior implies that there is a minimum 'true size' to the circle," Dr. Giddings said. Many believe this will turn out to be roughly comparable to the Planck scale.

There are other indications of graininess. According to the Heisenberg uncertainty principle, certain pairs of quantities are "noncommutative": you cannot simultaneously measure a particle's position and momentum, for example, or its energy and life span. The more precisely you know one, the fuzzier your knowledge of the other becomes.

In string theory, the very geometry of space may turn out to be noncommutative, making it impossible to measure simultaneously the horizontal and vertical position of a particle to perfect precision. The graininess of space itself would get in the way.

Not everyone in the unification business is a string theorist. Coming from an entirely different direction, researchers in a discipline called loop quantum gravity have devised a theory in which space is constructed from abstract mathematical objects called spin nets. Imagine a tiny particle spinning like a top on its axis. Now send it on a roundtrip journey, a loop through space. Depending on the Einsteinian shape of the space the particle traverses, it will return home with its axis tilted in a different direction. This change then provides a clue about how the space is curved.

Using particles with various spins, theorists can probe space in more detail. The different trajectories can then be combined into a web, called a spin network, that captures everything you need to know about how the space is curved -- what physicists call its geometry. "Our space in which we live is just this enormously complicated spin network," said Dr. Carlo Rovelli of the University of Pittsburgh. He and Dr. Lee Smolin of the Center for Gravitational Physics and Geometry at Pennsylvania State University have figured out how to use spin nets to calculate area and volume -- all this information is encoded within the weblike structure.

Suppose you are sitting at a table. To calculate its area you would add up the spins of all the links of the spin net that are passing through it, and multiply by the square of the Planck length. A table with an area of about one square meter would be impinged by some 10 to the 65th of these trajectories. The implication is that the very idea of a surface is an illusion generated by the spin network.

The picture gets even weirder. In quantum mechanics, an electron orbiting an atomic nucleus is thought of as a cloud of probability: a "superposition" in which all the electron's possible locations hover together. In the view of Dr. Rovelli, Dr. Smolin and their colleagues, the universe itself is a superposition of every conceivable spin net -- all the possible ways that it can be curved.

Where does time fit into the picture? A spin net provides a snapshot of the geometry of three-dimensional space at a particular instant. To describe space-time, Dr. Baez and other theorists have stretched spin nets into the fourth dimension, devising what they call spin

vi-A Fifth Force

Until recently, all expectations were that, although the universe might still be expanding, the rate of expansion should, due to the force of gravity, at least be slowing down. However, in 1998, measurements of distant exploding stars showed that the expansion of the universe seemed to be speeding up, rather than slowing down. Although these results are disputed, everyone agrees that cosmic expansion is slowing down less quickly than previously thought.

This implies one of two things: either there is a lot less matter in the universe than previously thought or some force must be speeding things up. One theory is that the vacuum of space itself creates energy which expresses itself as a repulsive or an anti-gravity force. This force is known as the cosmological constant and was first suggested by Einstein as a fudge factor to correct what he thought was a flaw in his relativity theory.

foam. Slice it and each infinitely thin cross section is a spin net.

Most perplexing of all, spin nets and spin foam cannot be thought of as existing in space and time. They reside on a more fundamental level, as a deep structure that underlies and gives rise to space-time. "That is the core of the matter," Dr. Rovelli said. "They don't live somewhere. They are the quantum spacetime." The universe, in this view, is conjured up from pure mathematics. And the old idea of space and time as the stage on which everything happens no longer seems to apply. "If we believe what we really have discovered about the world with quantum mechanics and general relativity, then the stage fiction has to be abandoned," Dr. Rovelli said, "and we have to learn to do physics and to think about the world in a profoundly new way. Our notions of what are space and time are completely altered. In fact, in a sense, we have to learn to think without them."

Einstein, however, was making his calculations according to what he thought was a static universe. When it was shown that the universe was expanding, Einstein abandoned his theory. At that stage it was thought that the density of the universe was much higher than it is thought to be now. Accordingly and given an expanding universe, the fudge factor was no longer However, it seems that necessary. unwittingly, Einstein may have been right. One confirmation of this is the fact that supernovae seem to be fainter than previously predicted. But if the universe has been moving much further apart because the vacuum energy pushes it this way, then the expected results work out perfectly¹. (Scientific American, Jan. '99, pg. 33)

¹ Recently, a new attempt to explain this fifth force has emerged by the name of quintessence. This theory tries to explain how a force which is repulsive, pushing the universe apart, rather than attractive, like gravity, might work. The problem, according to Andreas Albrecht of the University of California at Davis, is that in order to match all of the astronomical observations, the repulsion has to be weak for most of the history of the Universe and only become significant in the recent past, when the expansion began to take off. But that sudden "turn-on" behavior often requires theorists to choose specific parameter values just to match the data. This is tantamount to pulling numbers out of a hat. However, progress is being made on this front. Quintessence models are based on the concepts developed in the 1980s for a now well-accepted theory of the early Universe called inflation, which also involves an accelerating expansion.

Joshua Frieman of the Fermi National Accelerator Laboratory in Illinois says that many researchers have been struggling with the "why now?" problem--the fact that the accelerated expansion began only a few billion years ago, when most of the post-big-bang action should have settled down. So he thinks the new work could be important, but he and Albrecht are both anxious to begin testing such models against the increasingly precise observational data that will be pouring in over the next several years. Without clear tests, theorists are just looking for models with the right properties, says Frieman.

The following Extracts from an article by Jeremiah P. Ostriker and Paul J. Steinhardt in Scientific American January 2001, *The Quintessential Universe. It explains some of the latest issues in greater detail:*

Where does the strange dark-energy, which repels rather than attracts, come from? The best-known possibility is that the energy is inherent in the fabric of space. Even if a volume of space were utterly empty—without a bit of matter and radiation—it would still contain this energy. Such energy is a venerable notion that dates back to Albert Einstein and his attempt in 1917 to construct a static model of the universe. Like many leading scientists over the centuries, including Isaac Newton, Einstein believed that the universe is unchanging, neither contracting nor expanding. To coax stagnation from his general theory of relativity, he had to introduce vacuum energy or, in his terminology, a cosmological constant. He adjusted the value of the constant so that its gravitational repulsion would exactly counterbalance the gravitational attraction of matter.

Later, when astronomers established that the universe is expanding, Einstein regretted his delicately tuned artifice, calling it his greatest blunder. But perhaps his judgment was too hasty. If the cosmological constant had a slightly larger value that Einstein proposed, its repulsion would exceed the attraction of matter, and cosmic expansion would accelerate.

Many cosmologists, though, are now leaning toward a different idea, known as quintessence...A dynamical quantum field, not unlike an electrical or magnetic field, that gravitationally repels.

To explain the amount of dark energy today, the value of the cosmological constant would have to be fine-tuned at the creation of the universe to have the proper value—which makes it sound rather like a fudge factor. In contrast, quintessence interacts with matter and evolves with time, so it might naturally adjust itself to reach the observed value today.

...Gravitational repulsion resolves the "age crisis" that plagued cosmology in the 1990s. If one takes the current measurements of the expansion rate and assumes that the expansion has been decelerating, the age of the universe is less than 12 billion years.

Yet evidence suggests that some stars in our galaxy are 15 billion years old. By causing the expansion rate of the universe to accelerate, repulsion brings the inferred age of the cosmos into agreement with the observed age of celestial bodies.

In Newton's law of gravity, pressure plays no role; the strength of gravity depends only on mass. In Einstein's law of gravity, however, the strength of gravity depends not just on mass but also on other forms of energy and on pressure. In this way, pressure has two effects: direct (caused by the action of the pressure on surrounding material) and indirect (caused by the gravitation that pressure creates).

If the pressure is positive, as it is for radiation, ordinary matter and dark matter, then the combination is positive and gravitation is attractive. If the pressure is sufficiently negative, the combination is negative and gravitation is repulsive.

The repulsion stretches space, increasing its volume and, in turn, the amount of vacuum energy. The tendency to stretch is therefore self-reinforcing. The universe expands at an accelerating pace.

The total vacuum energy produced by all known fields predicts a huge amount...But if this estimate were true, an acceleration of epic proportions would rip apart atoms, stars and galaxies. Clearly, the estimate is wrong. One of the major goals of unified theories of gravity has been to figure out why.

One proposal is that some heretofore undiscovered symmetry in fundamental physics results in a cancellation of large effects, zeroing out the vacuum...A serious flaw, though, is that supersymmetry would be valid only at very high energies. Theorists are working on a way of preserving the perfect cancellation even at lower energies.

...Vacuum energy is not the only way to generate negative pressure. Another means...quintessence.

Quintessence does not accelerate the universe as strongly as vacuum energy does. If anything, quintessence is more consistent with the available date, but for now the distinction is not statistically significant.

Where would such a strange field come from?

An exotic possibility is that quintessence springs from the physics of extra dimensions. Over the past few decades, theorists have been exploring string theory, which may combine general relativity and quantum mechanics in a unified theory of fundamental forces. An important feature of string models is that they predict 10 dimensions. Four of these of our familiar three spatial dimensions, plus time. The remaining six must be hidden. In some formulations, they are curled up like a ball whose radius is too small to be detected (at least with present instruments). An

alternative idea is found in a recent extension of string theory, known as M-theory, which adds an 11th dimension.

We are unable to see the extra dimensions, but if they exist, we should be able to perceive them indirectly. In fact...branes would act just like a field. ...It could exactly mimic the hypothetical quintessence field.

Why has cosmic acceleration begun at this particular moment in cosmic history? Created when the universe was 10⁻³⁵ second old, dark energy must have remained in the shadows for nearly 10 billion years—a factor of nearly 10⁵⁰ in age. Only then, the data suggest, did it overtake matter and cause the universe to begin accelerating. Is it not a coincidence that, just when thinking beings evolved, the universe suddenly shifted into overdrive? Somehow the fates of matter and of dark energy seem to be intertwined. But how?

If the dark energy is vacuum energy, the coincidence is almost impossible to account for. Some researchers, including Martin Rees of the University of Cambridge and Steven Weinberg of the University of Texas at Austin, have pursued an anthropic explanation. Perhaps our universe is just one among a multitude of universes, in each of which the vacuum energy takes on a different value...[Most] universes...expand too rapidly to form stars, planets or life. Our universe would have the optimal value. Only in this "best of all worlds" could there exist intelligent beings capable of contemplating the nature of the universe.

A more satisfying answer...could involve a form of quintessence known as a tracker field...Tracker fields have classical attractor behavior like that found in some chaotic systems. In such systems, motion converges to the same result for a wide range of initial conditions. A marble put into an empty bathtub, for example, ultimately falls into the drain whatever its starting place.

Similarly, the initial energy density of the tracker field does not have to be tuned to a certain value, because the field rapidly adjusts itself to that value. It locks into at track on which its energy density remains a nearly constant fraction of the density of radiation and matter. In this sense, quintessence imitates matter and radiation, even though its composition is wholly different. The mimicking occurs because the radiation and matter density determine the cosmic expansion rate, which, in turn, controls the rate at which the quintessence density changes. On closer inspection, one finds that the fraction is slowly growing. Only after many millions or billions of years does quintessence catch up.

So why did quintessence catch up when it did? Cosmic acceleration could just as easily have commenced in the distant past or in the far future, depending on the choices of constants in the tracker field theory. This brings us back to the coincidence. But perhaps some event in the relatively recent past unleashed the acceleration.

According to the big bang theory, the energy of the universe used to reside mainly in radiation. As the universe cooled, however, the radiation list energy faster than ordinary matter did. By the time the universe was a few tens of thousands of years old—a relatively short time ago in logarithmic terms—the energy balance had shifted in favor of matter.

In a variation on the tracker models, this transformation triggered a series of events that led to cosmic acceleration today...But when the universe became matter-dominated, the change in the expansion rate jolted quintessence out of its copycat behavior. Instead of tracking the radiation or even the matter, the pressure of quintessence switched to a negative value. Its density held nearly fixed and ultimately overtook the decreasing matter density. In this picture, the fact that thinking beings and cosmic acceleration came into existence at nearly the same time is not a coincidence. Both the formation of stars and planets necessary to support life and the transformation of quintessence into negative-pressure component were triggered by the onset of matter domination.

In the short term, the focus of cosmologists will be to detect the existence of quintessence. It has observable consequences. Because its value differs from that of vacuum energy, it produces a different rate of cosmic acceleration.

In the beginning (or at least the earliest for which we have any clue), there was inflation, en extended period of accelerated expansion during the first few instants after the big bang. Space back then was nearly devoid of matter, and a quintessence-like quantum field with negative pressure held sway. During that period, the universe expanded by a greater factor than it has during the 15 billion years since inflation ended. At the end of inflation, the field decayed to a hot gas of quarks, gluons, electrons, light and dark energy.

For thousands of years, space was so thick with radiation that atoms, let alone larger structures, could never form. Then matter took control. The next stage—our epoch—has been one of steady cooling, condensation and

the evolution of intricate structure of ever increasing size. But this period is coming to an end. Cosmic acceleration is back. The universe as we know it, with shining stars, galaxies and clusters, appears to have been a brief interlude. As acceleration takes hold over the next tens of billions of years, the matter and energy in the universe will become more and more diluted and space will stretch too rapidly to enable new structures to form. Living things will find the cosmos increasingly If the acceleration is caused by vacuum energy, then the cosmic story is complete: the planets, stars and galaxies we see today are the pinnacle of cosmic evolution.

But if the acceleration is caused by quintessence, the ending has yet to be written. The universe might accelerate forever, or the quintessence could decay into new forms of matter and radiation, repopulating universe. Because the dark-energy density is so small, one might suppose that the material derived from its decay would have too little energy to do anything of interest. Under some circumstances, however, quintessence could decay through the nucleation of bubbles. The bubble interior would be a void, but the bubble wall would be the site of vigorous activity. As the wall moved outward, it would sweep up all the energy derived form the decay of Occasionally, two bubbles quintessence. would collide in a fantastic fireworks display. In the process, massive particles such as protons and neutrons might arise—perhaps stars and planets.

To future inhabitants the universe would look highly inhomogeneous, with life confined to distant islands surrounded by vast voids. Would they ever figure out that their origin was the homogeneous and isotropic universe we see about us today? Would they ever know that the universe had once been alive and then died, only to be given a second chance?

Experiments may soon give us some idea which future is ours. Will it be the dead end of vacuum energy or the untapped potential of quintessence? Ultimately the answer depends on whether quintessence has a place in the basic working of nature—the realm, perhaps, of string theory. Our place in cosmic history hinges on the interplay between the science of the very big and that of the very small.

APPENDIX C: QUANTUM THEORY

APPENDIX C: QUANTUM THEORY

The word quanta, which means an amount (as in the word quantity), in physics refers to a specific package of energy. Electrons move around the nucleus of an atom at a certain distance depending on how much energy they have. The more energy, the closer to the nucleus. But to move from an outer to an inner orbit requires a very specific quanta of energy, hence the name. In the 1920's, an entire theory of what happens at a sub-atomic level emerged, called quantum mechanics.¹

¹ Quantum theory ignited a scientific revolution 100 years ago, giving rise to paradoxical notions of lumpy light, wavelike particles and the disconnection of cause and effect. Leading physicists were among those who debated the theory at a 1927 congress in Brussels.

1900 Max Planck proposes that atoms emit energy in discrete amounts, called quanta, rather than in continuous waves.

1905 Albert Einstein explains the photoelectric effect (light strikes an atom and dislodges an electron) by suggesting that light is made of little energy bundles, which are later called photons.

Compact disc players work when the light (photons) from a laser strikes a sensor (photodiode) to generate electrical current (electron release).

1913 Niels Bohr proposes a planetary model of the atom in which electrons orbit the nucleus and jump between orbits as the atom absorbs or emits energy.

1924 Louis de Broglie develops the idea that matter, like light, can behave as waves. According to de Broglie's formula, the wavelength of an electron is only about one-10,000th the wavelength of a photon of light.

In electron microscopes, beams of matter, electron beams, explore spaces far smaller than those accessible to light. At right, the mouth of the common housefly.

1924 Einstein and Satyendra Nath Bose develop a set of statistics recognizing a class of particles, called bosons, which can collectively exist in the same state of energy. Photons are bosons, so they can collectively occupy a single state, allowing them to coalesce as an intense laser beam.

1925 Wolfgang Pauli develops the exclusion principle, stating that no two electrons in an

atom can occupy the same state of energy simultaneously. This explains the movement of electrons into successive orbits around the nucleus of an atom.

1926 Erwin Schr\(^2\)dinger proposes that an electron is best described by the mathematical function of all its possible energy states, a wave. Max Born later proposes that this wave is not the particle itself, but the probability of finding the particle in a particular place.

1926 Enrico Fermi and Paul Dirac describe the statistical properties of particles that obey the Pauli exclusion principle. Fermions, as they are known, include protons, neutrons and electrons and are distinct from particles that obey Bose-Einstein statistics.

Atoms in certain solids, semiconductors, will collectively fill out their energy orbits with electrons. When excited from a burst of energy, these electrons can move about. Semiconductors are at the heart of the circuits in microprocessors.

1927 Werner Heisenberg arrives at his uncertainty principle, theorizing that it is impossible to measure both the position and momentum of a particle at the same time

Quantum theory ignited a scientific revolution 100 years ago, giving rise to paradoxical notions of lumpy light, wavelike particles and the disconnection of cause and effect. Leading physicists were among those who debated the theory at a 1927 congress in Brussels. The discussion continues in Berlin this week.

Visible Quantum Effects:

Quantum physics, which permit an electron to be in more than one place at the same time, operate at a submicroscopic scale where we can't see or feel them. But quantum effects do occasionally obtrude into visible reality, as in the blobs of matter known as Bose-Einstein condensates which physicists have recently obtained by cooling stuff to near the absolute zero of temperature. Another quantum effect, also brought to light against a background of extreme cold, is that of the dots of relative heat and cold that cover the canvas of space like a pointillist painting.

The dots, which are about twice the size of the full moon, are minute temperature fluctuations that arise from the quantum effects that operated in the first few seconds of the universe's creation, some 15 billion years ago. The existence of these fluctuations was first discovered in 1992, but in three recent

The following description of Quantum Theory was edited from an article in the *NY Times*, December 2000, by Dennis Overbye.

They tried to talk Max Planck out of becoming a physicist, on the grounds that here was nothing left to discover.

Within a quarter of a century, the common sense laws of science had been overthrown. In their place was a bizarre set of rules known as quantum mechanics, in which causes were not guaranteed to be linked to effects; a subatomic particle like an electron could be in two places at once, everywhere or nowhere until someone measured it; and light could be a wave or a particle.

Niels Bohr, a Danish physicist and leader of this revolution, once said that a person who was not shocked by quantum theory did not understand it.

In 1913, Bohr set forth a model of the atom as a miniature solar system in which the electrons were limited to specific orbits around the nucleus. Einstein praised Bohr's theory as "musicality in the sphere of thought," but told him later, "If all this is true, then it means the end of physics."

While Bohr's theory worked for hydrogen, the simplest atom, it bogged down when theorists tried to calculate the spectrum of bigger atoms. "The whole system of

experiments, one conducted at a telescope and two aboard balloons, astronomers have now measured their size, an important statistic that bears on the geometry of the universe. The size of the dots confirms that the universe is "flat", as predicted by an account of its creation known as the inflation theory...

But if quantum physics rules only at invisible scales, how come it can paint the sky with moon-sized dots? Although the answer to this is not clear, scientists believe that it has to do with the fact that the entire universe began as a submicroscopic domain of a size subject to quantum rules. (Reported by Nicholas Wade, N.Y. Times, Nov 22 99)

concepts of physics must be reconstructed from the ground up," Max Born, a physicist at Guttingen University, wrote in 1923. He termed the as-yet- unborn new physics "quantum mechanics."

The new physics was born in a paroxysm of debate and discovery from 1925 to 1928 that has been called the second scientific revolution. Wolfgang Pauli, one of its ringleaders, called it "boy's mechanics," because many of the physicists, including himself, then 25, Werner Heisenberg, 24, Paul Dirac, 23, Enrico Fermi, 23, and Pascual Jordan, 23, were so young when it began. Bohr, who turned 40 in 1925, was their fatherconfessor and philosopher king. His new for theoretical physics institute Copenhagen became the center European science.

The decisive moment came in the fall of 1927 when Heisenberg uncertainty principle, which stated that it was impossible to know both the position and velocity of a particle at once. The act of measuring one necessarily disturbed the other.

Physicists uncomfortable with Heisenberg's abstract mathematics took up with a friendlier version of quantum mechanics based on the familiar mathematics of waves. In 1923, the Frenchman Louis de Broglie had asked in his doctoral thesis, if light could be a particle, then why couldn't particles be waves?

Inspired by de Broglie's ideas, the Austrian Erwin Schrodinger, came up with an equation that would become the yin to Heisenberg's yang. In Schrodinger's equation, the electron was not a point or a table, but a mathematical entity called a wave function, which extended throughout space. According to Born, this wave represented the probability of finding the electron at some particular place. When it was measured, the particle was usually in the most likely place, but not guaranteed to

be, even though the wave function itself could be calculated exactly.

Born's interpretation was rapidly adopted by the quantum gang. It was a pivotal moment because it enshrined chance as an integral part of physics and of nature.

"The motion of particles follows probability laws, but the probability itself propagates according to the law of causality," he explained.

That was not good enough for Einstein. "The theory produces a good deal but hardly brings us closer to the secret of the Old One," Einstein wrote in late 1926. "I am at all events convinced that he does not play dice." Heisenberg called Schrodinger's theory "disgusting — "but both versions of quantum mechanics were soon found to be mathematically equivalent.

Uncertainty, which added to the metaphysical unease surrounding quantum physics, was followed in turn in 1927 by Bohr's complementarity principle. Ask not whether light was a particle or a wave, said Bohr, asserting that both concepts were necessary to describe nature, but that since they were contradictory, an experimenter could choose to measure one aspect or the other but not both. This was not a paradox, he maintained, because physics was not about things but about the results of experiments.

A year later, Dirac married quantum mechanics to Einstein's special relativity, in the process predicting the existence of antimatter. (The positron, the antiparticle to the electron, was discovered four years later by Carl Anderson.) Dirac's version, known as quantum field theory, has been the basis of particle physics ever since, and signifies, in physics histories, the end of the quantum revolution. But the fight over the meaning of the revolution had just barely begun, and it has continued to this day.

Quantum Wars

The first and greatest counterrevolutionary was Einstein, who hoped some deeper theory would rescue God from playing dice. In the fall of 1927 at a meeting in Brussels, Einstein challenged Bohr with a series of gedanken, or thought experiments, designed to show that quantum mechanics was inconsistent. Bohr, stumped in the morning, always had an answer by dinner.

Einstein never gave up. A 1935 paper written with Boris Podolsky and Nathan Rosen described the ultimate quantum gedanken, in which measuring a particle in one place could instantly affect measurements of the other particle, even if it was millions of miles away. Was this any way to run a universe?

Einstein called it "spooky action at a distance."

Modern physicists who have managed to create this strange situation in the laboratory call it "entanglement." "Entangled objects behave as if they were connected with another no matter how far apart they are – distance does not attenuate entanglement in the slightest. If something is entangled with other objects, a measurement of it simultaneously provides information about its partners¹." Today, scientists are seriously working with this concept to see whether they can speed up the transfer of information.

Einstein's defection from the quantum revolution was a blow to his more conservative colleagues, but he was not alone. Planck also found himself at odds with the direction of the revolution Schrodinger, another of "the and conservative old gentlemen," as Pauli once described them, advanced his cat gedanken experiment to illustrate how silly physics had become.

According to the Copenhagen view, it was the act of observation that "collapsed" the wave function of some particle, freezing it into one particular state, a location or velocity. Until then, all

-

¹ Scientific American, November, 02.

the possible states of the particle coexisted, like overlapping waves, in a condition known as quantum superposition.

Schrodinger imagined a cat in a sealed container in which the radioactive decay of an atom would trigger the release of cyanide, killing the cat. By the rules of quantum mechanics the atom was both decayed and not decayed until somebody looked inside, which meant that Schrodinger's poor cat was both alive and dead.

This seemed to be giving an awful lot of power to the "observer." It was definitely no way to run a universe.

Over the years physicists have proposed alternatives to the Copenhagen view.

Starting in 1952, when he was at Princeton, the physicist David Bohm, who died in 1982, argued for a version of quantum mechanics in which there was a deeper level, a so- called quantum potential or "implicate order," guiding the apparent unruliness of quantum events.

Another variant is the many-worlds hypothesis developed by Hugh Everett III and John Wheeler, at Princeton in 1957. In this version the wave function does not collapse when a physicist observes an electron or a cat; instead it splits into parallel universes, one for every possible outcome of an experiment or a measurement.

Shut up and compute

Most physicists simply ignored the debate about the meaning of quantum theory in favor of using it to probe the world, an attitude known as "shut up and compute."

Pauli's discovery that no two electrons could share the same orbit in an atom led to a new understanding of atoms, the elements and modern chemistry.

Quantum mechanics split the atom and placed humanity on the verge of plausible catastrophe. Engineers learned how to "pump" electrons into the upper energy rungs in large numbers of atoms and then make them all dump their energy all at once, giving rise to the laser. And as Dr. Lederman said in an interview, "The history of transistors is the history of solving Schrydinger's equation in various materials".

Quantum effects were not confined to the small. The uncertainty principle dictates that the energy in a field or in empty space is not constant, but can fluctuate more and more wildly the smaller the period of time that one looks at it. Such quantum fluctuations during the big bang are now thought to be the origin of galaxies.

In some theories, the universe itself is a quantum effect, the result of a fluctuation in some sort of pre-universal nothingness. "So we take a quantum leap from eternity into time," as the Harvard physicist Sidney Coleman once put it.

Where the Weirdness Goes

Bohr ignored Schrodinger's cat, on the basis that a cat was too big to be a quantum object, but the cat cannot be ignored anymore. In the last three decades, the gedanken experiments envisioned by Einstein and his friends have become "ungedankened," bringing the issues of their meaning back to the fore.

Last summer, two teams physicists managed to make currents go in two directions at once around tiny superconducting loops of wire — a feat they compared to Schrodinger's cat. Such feats, said Wojciech Zurek, a theorist at Los Alamos National Laboratory, raise the question of why we live in a classical world at all, rather than in a quantum blur. Bohr postulated a border between the quantum and classical worlds, but theorists prefer that there be only one world that can somehow supply its own solidity. That is the idea behind a new concept called decoherence, in which the interaction of wave functions with the environment upsets the delicate balance of quantum states and makes a cat alive or dead but not in between.

"We don't need an observer, just some 'thing' watching," Dr. Zurek explained. When we look at something, he said, we take advantage of photons, the carriers of light, which contain information that has been extracted from the object. It is this loss of information into the environment that is enough to crash the wave function, Dr. Zurek says.

Decoherence, as Dr. Zurek notes, takes the observer off a pedestal and relieves quantum theory of some of its mysticism, but there is plenty of weirdness left. Take the quantum computer, which Dr. Lederman refers to as "a kinder, gentler interpretation of quantum spookiness."

Ordinary computers store data and perform computations as a series of "bits," switches that are either on or off, but in a quantum computer, due to the principle of superposition, so-called qubits can be on and off at the same time, enabling them to calculate and store myriads of numbers at a time.

In principle, according to David Deutsch, an Oxford University researcher who is one of quantum computing's more outspoken pioneers, a vast number of computations, "potentially more than there are atoms in the universe," could be superposed inside a quantum computer to solve problems that would take a classical computer longer than the age of the universe. In the minds of many experts, this kind of computing illuminates the nature of reality itself.

Dr. Deutsch claims that the very theory of a quantum computer forces physicists to take seriously the manyworlds interpretation of quantum theory. The amount of information being processed in these parallel computations, he explains, is more than the universe can hold. Therefore, they must be happening in other parallel universes out in the "multiverse," as it is sometimes called.

"There is no other theory of what is happening," he said. The world is much bigger than it looks, a realization that he thinks will have a psychological impact equivalent to the first photographs of atoms. Indeed, for Dr. Deutsch there seems to be a deep connection between physics and computation. The structure of the quantum computer, he says, consists of many things going on at once, lots or parallel computations. "Any physical process in quantum mechanics," he said. "consists of classical computations going on in parallel."

"The quantum theory of computation is quantum theory," he said.

The Roots of Weirdness

Quantum mechanics is the language in which physicists describe all the phenomena of nature save one, namely gravity, which is explained by Einstein's general theory of relativity. The two theories — one describing a discontinuous "quantized" reality and the other a smoothly curving space-time continuum — are mathematically incompatible, but physicists look to their eventual marriage, a so-called quantum gravity.

"There are different views as to whether quantum theory will encompass gravity or whether both quantum theory and general relativity will have to be modified," said Lee Smolin, a theorist at Penn State.

Some groundwork was laid as far back as the 1960's by Dr. Wheeler, 89, who has argued quantum theory with both Einstein and Bohr. Even space and time, Dr. Wheeler has pointed out, must ultimately pay their dues to the uncertainty principle and become discontinuous, breaking down at very small distances or in the compressed throes of the big bang into a space-time "foam."

Most physicists today put their hope for such a theory in super- strings, an ongoing and mathematically dense effort to understand nature as consisting of tiny strings vibrating in 10-dimensional space.

In a sort of missive from the front, Edward Witten of the Institute for Advanced Study in Princeton, N.J., said recently that so far quantum mechanics appeared to hold up in string land exactly as it was described in textbooks. But, he said in an e-mail message, "Quantum mechanics is somehow integrated with geometry in a way that we don't really understand yet."

The quantum is mysterious, he went on, because it goes against intuition. "I am one of those who believes that the quantum will remain mysterious in the sense that if the future brings any changes in the basic formulation of quantum mechanics, I suspect our ordinary intuition will be left even farther behind."

Intuition notwithstanding, some thinkers wonder whether or not quantum weirdness might, in fact, be the simplest way to make a universe. After all, without the uncertainty principle to fuzz the locations of its buzzing inhabitants, the atom would collapse in an electromagnetic heap. Without quantum fluctuations to roil the unholy smoothness of the big bang, there would be no galaxies, stars or friendly warm planets. Without the uncertainty principle to forbid nothingness, there might not even be a universe.

"We will first recognize how simple the universe is," Dr. Wheeler has often said, "when we recognize how strange it is." Einstein often said that the question that really consumed him was whether God had any choice in creating the world. It may be in the end that we find out that for God, the only game in town was a dice game.

When this theory is applied to the force of electromagnetism, it is called quantum electrodynamics, or QED. When it is applied to the strong force, it is called quantum chromodynamics or QCD. Although it was first proposed in the

1970's, scientists are still busy proving QCD. All the evidence thus far has confirmed it. Two recent experiments, the last finishing in November 1995, required a super-computer which could perform 11 billion arithmetic operations a second to run continuously for one and two years consecutively, but still only managed to come up with an approximation.

Recently, attempts have been made to apply quantum physics to space and time as well¹. This would mean that space and time also comes in discrete quanta, or packages. In other words, they are not smooth but grainy². It is true that space and time looks smooth to us. But this is just an illusion. If we look at the world on a small enough scale, we see a different picture³. We will see that space and time is made up of extremely finegrained structures, which helps explain why they appear so smooth to us: As for time, "A blink of an eye has more fundamental moments than there are atoms in mount Everest," says physicist Smolin. Similarly with space. Space is made of discrete atoms each of which carries a very tiny unit of volume⁴.

Once space and time are shown display quantum effects, then gravity too should be subject to these forces. At large scales, the effects of gravity are easy enough to see: think falling apples, or the

¹ One theory which is used to describe this is called Loop quantum gravity.

² As Lee Smolin of Pennsylvania state University asserts in his new book, "Three Roads to Quantum Gravity"

³ Smolin: Behind them is a world composed of discrete sets of events, which can be counted. At a level of between 10(-33) centimeter to 10(-43) seconds, i.e. the time it takes light to flash across such a narrow gap. This makes up a unit of measurement called the "plank scale" is the size at which space and time may be fragmented into distinct units.

⁴ Smolin maintains that we must adopt a "relational" viewpoint, "in which space and time are nothing but networks of relationships."

movement of planets around the sun. At the atomic level, however, the force is extremely weak, making its quantum effects difficult to measure. But, in 2002, scientists were finally able to confirm what quantum rules predict: namely, that elementary particles under the influence of gravity move from one energy state to another by making quantum leaps.

APPENDIX D: SUBATOMIC PARTICLES

- i-The Standard Model, the Four Forces and their Particles
- ii-Neutrinos
- iii-Anti-Matter
- iv-Missing Matter and Paired particles
- v -Other Expected Particles

APPENDIX D: SUBATOMIC PARTICLES

i-The Standard Model, the four forces and their particles

(See **Appendix B** for a description of each one of the four forces)

Atoms are comprised of a nucleus at the core and electrons surrounding them. The nucleus is in turn comprised of neutrons and protons which are really made up of quarks. So the basic building blocks of the universe are really electrons and quarks plus a mysteriously neutral particle called the neutrino which we will discuss below.

There are actually several hundred subatomic particles that have discovered to date. Some of them exist for only fractions of a second, when electrons , protons or other particles collide. Every time a particle is created, so is an antiparticle. If a particle collides with its antiparticle they destroy each other. (Scientists have a hard time explaining why there are so many more particles than anti-particles in the universe). Each of the four forces operates on some subatomic substance and also has a carrier substance to transmit or communicate the force from one place to another. The particles associated with the actual forces are called fermions whereas those particles which carry the forces are called bosons¹.

_

The underlying difference between bosons and fermions is this: in a collection of particles, if two identical fermions are swapped (for instance, switch two electrons), the total quantum state of the collection is inverted. (image crests and troughs of a wave being interchanged.) swapping two identical bosons, in contrast, leaves the total state unaltered. fermions are inherently the individualists and loners of the quantum particle world: no two fermions ever occupy the same quantum state. their aversion to close company is strong enough to hold up a neutron star against collapse when the crushing weight of gravity has overcome every other force or nature. bosons, in contrast, are convivial copycats and readily gather in identical states. every boson in a particular state encourages more of its species to emulate it. under the right conditions, bosons form regimented armies of clones, such as the photons in a laser beam or the atoms in superfluid helium 4. those characteristics lead to the pauli exclusion principle, which prevents two fermions from occupying the same quantum state. bosons, in contrast, prefer to collect in identical states, as demonstrated by helium 4 atoms in a superfluid.

yet somehow in the mirror of supersymmetry, standoffish fermions look magically like sociable bosons, and vice versa. figuratively, you might say it is a symmetry that lets you compare apples and oranges. hold up an apple to the supersymmetry mirror, and its reflection looks and tastes like an orange.

by mapping bosons onto fermions, and vice versa, supersymmetry opens up a new class of possible relations among particles. these relations results in far greater computational power for analyzing or predicting a system's behavior.

for the know particles to obey supersymmetry, they must each have a "superpartner" – every boson must have a fermionic counterpart, and vice versa. the know particles do not have the right properties to be one another's partners, so new particles are predicted. the standard model is extended t the superymmetric standard model. the postulated fermionic partners go by the names photino, gluino, wino, zino, grativino and higgsino. the bosonic partners have an "s" added to their names: selecctron, smuon, sneutrino, squark and so on . None of these particles have yet been detected.

¹ Ultimately, all particles are divided between fermions and bosons. fermions are the particles which make up the material world. they are particles such as electrons, protons and neutrons, as well as the related particles the muon, the tau and the neutrinos. bosons generate the forces of nature. photons (responsible for electromagnetism) and gluons (which bind quarks together) are the best known bosons. w and z particles as well as the postulated graviton and higgs particle are also bosons.

Gravity, operates on large objects. The particle which is supposed to transmit gravity is called the **graviton**. Gravitons have never been seen or even proven. This is because gravity is so weak, the effect of the graviton on matter is very hard to detect

Both electromagnetism and the weak force operate on electrons (and heavier versions of the electron called muons and tauons), though the weak force also operates on quarks (see the strong force below) and the most common particle in the universe, the neutrino. (See ii - Neutrinos below) The transmitting particle for electromagnetism is the photon, which also transmits light. The transmitting particles for the weak force are the W and Z particles.

The Strong Force operates on quarks, of which there are at least 18 different kinds. However, only the lightest quarks, the up and the down quark, comprise ordinary protons and neutrons. The other quarks (the top and the bottom, the strange and the charm) do not occur in the natural world. They were thought to have existed, however, at the time of the Big Bang and they have been reproduced in giant accelerators through the efforts of thousands of scientists. It turned out to be very heavy, more than an atom of gold. The most difficult of these quarks to reproduce, the top quark, was only finally confirmed by Fermilab (near Chicago) as late as 1995 by several teams comprising a total of 1,000 scientists. It turned out to be very heavy, more than an atom of gold and has a lifetime of only about 10^{-24} of a However. at second. verv high temperatures (such as soon after the Big Bang), the quark loses all mass (as do the W, Z, photons and leptons).

The strong force is so strong that even those quarks which do occur in the natural world can never be found on their own, but rather only in protons and neutrons. The transmitting particle for the strong force is the **gluon**. When the weak force acts on quarks, it causes them to decay and it to radiate energy (radiation).

The Standard Model

Scientific American, July 2000, *The Large Hadron Collider:*

In the past 30 years, particle physicists have established a relatively compact picture - the Standard Model that successfully describes the structure of matter down to 10⁻¹⁸ meter. The Standard Model succinctly characterizes all the known constituents of matter and three of the four forces that control their behavior. The constituents of matter are six particles called leptons and six called quarks. One of the forces, known as the strong force, acts on quarks, binding them together to form hundreds of particles known as hadrons. The proton and the neutron are hadrons, and a residual effect of the strong force binds them together to form atomic The other two forces are nuclei. electromagnetism and the weak force, which operates only at very short range but is responsible for radioactive beta decay and is essential for the suns' fuel cycle. The Standard Model elegantly accounts for tow forces as a "unified" electroweak force, which relates their properties despite their appearing very different.

More than 20 physicists have won Nobel Prizes for work that contributed to the Standard Model, from the theory of quantum electro-dynamics (the 1965 prize) to the discovery of the neutrino and the tau particle (1995) and the theoretical work of Gerardus 't Hooft and Martinus J G Veltman while at the University of Utrecht (1999). Nevertheless, although it is a great scientific achievement, confirmed by a plethora of experiments (some to extraordinary precision) the Standard Model has a number of serious flaws.

First, it does not consistently include Albert Einstein's theory of the properties of space-time and its interaction with matter. This theory, general relativity, provides a beautiful, experimentally very well verified description of the fourth force, gravity. The difficulty is that the Standard Model is a fully quantummechanical theory, whereas relativity is not quantum-mechanical and its predictions must therefore break down at very small scales (very far from the domain in which it has been tested). quantum-mechanical of a description of gravity renders the Standard Model logically incomplete.

Second, although it successfully describes a huge range of data with simple underlying equations, the Standard Model contains many apparently arbitrary features. It is too baroque, too byzantine, to be the full story. For example, it does not indicate why there are six quarks and six leptons instead of, say, two or four. Not does it explain why there are equal numbers of leptons and quarks - is this just a coincidence? On paper we can construct theories that give better answers and explanations, in which there are deep connections between quarks and leptons, but we do not know which, if any, of these theories is correct.

Third, the Standard Model has an unfinished, untested element. This is not minor detail but a central component: a mechanism to generate the observed masses of the particles. Particle masses are profoundly important – altering the mass of the electron, for example, would change all of chemistry, and the masses of neutrinos affect the expansion of the universe. (Neutrinos' masses are at most a few millionths of an electron's mass, but recent experiments indicate they are probably not zero.)

Physicists believe that particle masses are generated by interactions with a field that permeates the entire universe; the stronger a particle interacts with the field, the more massive it is. The nature of this field, however, remains unknown. It could be a new elementary field, known as the Higgs field after British physicist Peter Higgs. Alternatively, it may be a composite object, made of new particles ("techniquarks") tightly bound together by a new force ("technicolor"). even if it is an elementary field, there are many variations on the higgs theme: how many higgs fields are there, and what are their detailed properties?

To address this kind of physics requires re-creating conditions that existed just a trillionth of a second after the big bang, a task that will push modern technologies to their limits and beyond.

Charles W. Petit wrote the following article in the U.S. News & World Report, February 19, 2001, *By the light of the muon*:

Last week...researchers revealed the first sign of error in the Standard Model...

An international, 68-member team spent several years scrutinizing debris spawned by billions of protons crashing into nickel at nearly the speed of light in Brookhaven's cyclotron. They were looking for a number—specifically for a ratio in the magnetic behavior of spinning, short-lived particles called muons—particles like electrons, only heavier. They came up with 0.0011659203. The standard model, which has always been verified by such precise measurements, is more like 0.0011659159.

ii-Neutrinos

Neutrinos are tiny, electrically neutral particles, 600 million times more numerous than electrons and protons put together, which move at high speeds, nearly the speed of light, throughout the universe. Neutrinos penetrate anything and everything: there are millions of them going through us at any one time and they

can even go through the earth, from the one side to the other.

Until 1998, it was thought that neutrinos have no mass, but then a huge detector placed 2000 feet down a mine shaft in Japan and filled with water discovered that they do in fact have a tiny mass. If they have the mass of just one tenth of an electron volt, then neutrinos would account for as much mass as the entire visible universe.

This is of great significance because it would account for much of the "missing matter" of the universe. It may also lead to significant modifications in the standard model of matter. (*Scientific American*, Aug. 1998)

Neutrinos remain problematic though, because the sun ought to be omitting many more than we measure coming from that source. Some theories speculate that there are at least four types of neutrinos (three are currently known to exist), and that one of these (the sterile neutrino) is undetectable. (NY Science Times, 1998)

In July, 2000. the tau neutrino was discovered at Fermilab (Fermi National Accelerator Laboratory) near Chicago2.

¹ According to the Standard Model, neutrinos have no mass. But two years ago, a Japanese experiment called Super-Kamiokande found evidence that neutrinos have at least a small mass, without determining what that mass is. Experiments which involve shooting beams of neutrinos hundreds of miles underground to distant detectors are now underway to see if one type of neutrino changes into another en route. According to advanced theories, any such transmutation would be an indication of the mass. Knowing the value of the mass could help settle several mysteries, including how much swarms of neutrinos in space might contribute to the weight of the universe.

2 Neutrinos, like electrons and muons, are all known as leptons within the Standard Model. Leptons are a class of particles that do not interact strongly with matter. So when Dr. Perl and colleagues discovered a new lepton, called the tau particle, in 1975, they assumed that the electron neutrino and muon neutrino would soon have company in the form of the tau neutrino. Dr. David O. Caldwell, a physicist at the University of California in Santa

(As reported in the NY Times by James (The scientists had to fire an estimated 100 trillion tau neutrinos into an advanced emulsion similar to photographic film to find just four neutrinos which produced minute but clearly recognizable streaks in the emulsion. Although their existence had been suspected for 25 years, tau neutrinos had escaped detection because it takes a large amount of energy to create them and because neutrinos pass through most matter almost without a trace. Up until the mid 1990s, many scientists regarded detection of the Tau as virtually impossible.) This leaves just one particle, the Higgs boson, which is predicted by the Standard Model, yet to be discovered. According the theory, the source of all mass in the universe.

Physicist Wolfgang Pauli first postulated the existence of neutrinos in the 1930's to account for energy and momentum that seemed to vanish during the radioactive decay of various elements. So weakly do the particles interact with matter that physicists had to wait nearly 30 years for the first detection of any neutrinos.

Neutrinos are produced in great numbers in the solar core. Most of the energy created in the center of the sun takes millions of years to reach the solar surface and leave as sunlight. Neutrinos, in contract, emerge after two seconds. However, in thirty years of experiments the number of neutrinos arriving from the sun was always significantly less than the predicted total. The Standard Model of particle physics holds that there are three completely distinct, mass-less flavors of neutrinos: the elctron-neutrino, muonneutrino and tauneutrino. Experiments

Barbara, said that it would have been "an incredible surprise" if the tau particle did not have its own neutrino, as the electron and the muon do. Some speculative theories beyond the Standard Model postulate yet another neutrino, a so-called sterile neutrino that would be associated with no other particle.

SCIENCE: Page 133

_

were designed to look exclusively for this one flavor-at solar neutrino energies, only electron neutrinos can convert chlorine atoms to argon. But scientists suspect that electron-neutrinos from the sun are transformed into one of the other flavors and thus escape detection¹. The Neutrinos would then oscillate during their eightminute journey though the vacuum of space form the sun to the earth.

Neutrinos can be observed deep underground because of the extreme weakness of their interaction with matter. To detect all types of Neutrinos, scientists built SNO. 1,000 tons of heavy, deuterium water was brought to the bottom of a nickel mine in Sudbury, two kilometers below the surface of the earth². Although the vast majority of neutrinos that enter SNO pass through it, on very rare occasions, one will-by chance alonecollide with an electron or an atomic nucleus and deposit enough energy to be observed. Five million high-energy solar neutrinos pass through every square centimeter of the earth every second.

Although the vast majority of neutrinos that enter SNO pass through it, on very rare occasions, one will-by chance alone-collide with an electron or an atomic nucleus and deposit enough energy to be observed. Five million high-energy solar neutrinos pass through every square centimeter of the earth every second.

SNO results agree remarkably well with the predictions of solar models³. We

can now claim that we really do understand the way the sun generates its power.

If neutrinos change flavor through oscillation, then they cannot be mass-less. After photons, neutrinos are the second most numerous known particles in the universe, so even a tiny mass could have a significant cosmological significance. Neutrinos were the last known particles that could have made up the missing dark matter This amount is not quite enough to explain all the matter that seems to be present in the universe, and therefore some particle or particle not currently known to physics must exist-and with a density in excess of everything we do know.

Future neutrino experiments might probe one of the biggest mysteries in the Why is the universe made of matter rather than antimatter? physicist Andrei Sakharov first pointed out that to get from a big bang of pure energy to the current matter-dominated universe required the laws of physics to be different for particles and antiparticles. called CP (charge-parity) violation, and sensitive measurements of particle decays have verified that the laws of physics violate CP. The problem is that the CP violation seen so far is not enough to explain the amount of matter around us, so phenomena we have not yet observed must be hiding more CP violation. One possible hiding place is neutrino oscillations. To observe CP-violating neutrino oscillations will probably be more than a decade.

neutrinos are caused by something else, such as radioactive contamination.

Based on this, SNO results showed a total neutrino flux of 5.09 million per square centimeter per second. Nearly two thirds of the total 5.09 million neutrinos arriving from the sun are either muon- or tau neutrinos. The fusion reactions can produce only electron neutrinos, so some of them must be transformed on their way to the earth. The fundamental particles have properties contained in the Standard Model deduced 5.09 million neutrinos agrees remarkably well with the predictions of solar models

¹ The Standard Model would not allow for this. But, scientists are in agreement that the Standard Model is incomplete. This would allow for some neutrino flavors to mix with each other.

² During the day, neutrinos easily travel down to SNO through two kilometers of rock, and at night they are almost equally unaffected by the thousands of kilometers that they travel up through the earth.

³ must estimate how many of the apparent neutrinos are caused by something else, such as radioactive contamination. SNO must estimate how many of the apparent

iii-Anti-Matter

In 1928 the English physicist P.A.M. Dirac predicted the existence of antimatter. Dirac claimed that for every particle of ordinary matter there was an antiparticle with the same mass but an opposite charge. These antiparticles could join to form antiatoms, which in turn could form antimatter counterparts to every object in the universe - antistars, antigalaxies, even anti-humans. What is more, if a particle of matter collided with a particle of antimatter, they would both be annihilated in an energetic burst of gamma rays. If a human and an antihuman shook hands, the resulting explosion would equivalent of 1,000 one-megaton nuclear blasts, each one capable of destroying a small city.

It was an extraordinary proposition. The theory was confirmed just four years later, when Carl D, Anderson, a physicist at the California Institute of Technology, detected the first antiparticle. While using a cloud chamber to study cosmic rays high energy particles that bombard the earth from space - Anderson observed a vapor trail made by a particle with the same mass as an electron but an opposite (that is, positive) charge. Dubbed the positron, it was the antimatter counterpart of the electron. Antiprotons proved harder to find, but in 1955 physicists at Lawrence Berkeley Laboratory used a particle accelerator to create them. In 1995 scientists European at CERN, the laboratory for particle physics near synthesized Geneva. atoms of antihydrogen - for a brief instant - by merging positrons and antiprotons in a particle accelerator.

In recent years scientists have built sophisticated detectors to search for antimatter in cosmic rays. Because cosmic rays are destroyed by collision with the nuclei of air molecules, researchers have lofted their detectors in balloons into the least dense reaches of the atmosphere. There they have found many anti-particles of different sorts.

iv-Missing Matter and Paired Particles

Astronomers claim that as much as 90% of the universe may be undetectable or dark matter. There are three ways of measuring the total mass of the universe, each coming to a different result, and each indicating that the universe is filled with some kind of extraordinary matter.

Another mystery which this missing matter would solve is why the four forces of nature differ so greatly in strength (for one thing, quantum forces ought to equalize the strength of these forces). One way of explaining this is by showing how each force actually pairs off with another, hidden partner in a kind of supersymmetry. The photons would pair off with a (theoretical) photino, the quark with a squark, and so on. For each particle, physicists believe there is a more massive "sparticle" that remains to be discovered.

The search for sparticles is a central goal of particle physics today. The easiest one to find should be the lightest one, the "neutralino." It is thought to be much bigger than a proton, yet much weaker. Hence it is called a WIMP – a weakly interacting massive particle. Physicists think that WIMPs may make up the missing dark matter, or at least most of it¹. The amount of WIMPs which the Big Bang ought to have produced correlates nicely with the amount of missing or dark

¹ There are at least two candidates for dark particle. One is called the axion, a wisp weighing less than a billionth as much as an electron. The other are WIMPs, heavier relics of the big bang that would weigh as much as a metal atom.

matter. In fact, in 1999, an Italian group of scientists actually claimed to have found WIMPs, though many scientists remain skeptical. (Scientific American, March 1999)¹

¹ A team of physicists based at the University of Rome has generated both intense excitement and profound skepticism among scientists around the world by presenting evidence that they may have detected a heavy particle that could solve a 70-year-old mystery in astronomy and lead to a conceptual breakthrough in physics.

The presumed particles would weigh at least 50 times as much as a proton and would almost always pass through other matter without a trace because of an extremely weak ability to interact with it. The new evidence, which so far has not been confirmed by other scientists, would suggest that space is swarming with enough of the particles to account for the long-sought "dark matter" variously called a neutralino and a weakly interacting, massive particle, or WIMP that astronomers believe makes up some 80 percent of all the mass in the universe.

Though astronomers have been measuring the gravitational pull of the dark matter since the 1930's, they have never succeeded in detecting it directly. A particle like the one that may have been found could also be part of an entire family of still-undiscovered particles predicted by an advanced theory of physics called supersymmetry. Many physicists regard supersymmetry as a possible first step toward an ultimate theory that would account for all the known forces and particle behaviors in nature -- marrying quantum theory and gravity, for example.

Analysis of data collected over three years in an underground experiment at the Gran Sasso National Laboratory east of Rome "favors the possible presence of a WIMP." The group came to its conclusion by noting seasonal variations in the counts registered on their detector, as expected if Earth is passing through a cloud of the particles in its orbit.

Because the sun is orbiting around the center of the Milky Way at a speed of about 140 miles per second, through the clouds of WIMPs, "a billion of them would be passing through your body every second. Rarely, however, a WIMP should interact with ordinary matter in a collision.

"The Copernican revolution told us we're not the center of the universe," Dr. Cline said. "This tells us we're not the matter of the universe." Intellectually, he said, the Detecting a particle means getting it to interact with the ordinary matter in an instrument, quite a complex feat given that ordinarily interacting is just what dark matter particles don't do².

Dark matter may be made up, at least in part, of "supermassive" black holes³. In October, 2002, astrophysicists tracked a star, called S2, racing around a dark mass at the center of the Milky Way, offering some support to this theory⁴.

development "is just the tip of an incredible iceberg, if this is right." But a number of scientists, including Dr. Turner, said it was still unclear whether the finding was correct.

²The answer is to design detectors discriminating enough to pick out the one dark matter particle in countless trillions that does signal its passage, without being swamped by noise from mundane sources such as radioactivity and cosmic rays. Ibe attemot at snaring a WIMP involves putting in hockeypuck-size disks of germanium and silicon, cooled almost to absolute zero placed deep in a mine. Another team relies on 250 pounds of sodium iodide, a material that gives off faint flashes of light when particles collide with it. A third attempt will use a supercooled crystal detector. Yet another hopes to trap WIMPs in tanks of liquid xenon deep in Britain's Boulby mine.

- ³ What is known is that at the center of the Milky Way, our galaxy, there is a dark mass of unknown composition. This is less mysterious than dark matter, which cannot be located at all. Nevertheless, research on the dark mass may throw light on dark matter as well.
- ⁴ A star that happens to be close to a supermassive black hole will orbit very rapidly around a point of seemingly empty space. Another clue is the radiation emitted by gas that is heated up just before it is swallowed forever by the black hole.

Scinetists tracked the orbit of the closest known star to the black-hole candidate Sagittarius A*, a dark mass 3 million times the sun's mass. Following the star for 10 years, they found that it does indeed orbit Sagittarius A*. Approaching the black hole's maw, the star reaches its highest velocity, whizzing past it at 5,000 kilometers per second.

Supermassive black hole is the term for black holes whose mass is more than 1 million times that of the sun can be found at the center of many galaxies¹. The pull of this dark mass is so great that even light can't escape it, rendering it invisible, but still felt by its immense gravitational pull.

In the last two years, scientists have come to accept a second dark ingredient: some kind of dark energy that causes the universe to expand and ever increasing rate. Even if a WIMP blunders into one of these traps and scientists can finally move toward solving the dark matter mystery, the mystery of dark energy will remain².

v -Other Expected Particles

There is another whole zoo of particles which are predicted to exist as a solution to what is know as the hierarchy problem. This is the problem of the gigantic differences in size between the basic particles. The electron is 350 000 times lighter than the heaviest quark, and neutrinos, if they have mass at all, are even

lighter.3 However, it is expected that the unified theory will produce much larger particles than the largest ones now known.⁴ Now these particles only appear as expressions of each one of the four forces. However, when we try to combine all these forces, the energy scale then jumps to an energy scale of 10 to about the 16⁵, a vast jump that makes the previous ration of one to 350 000 seem tiny. There are several solutions proposed to this problem, all of them predicting many new particles. It is expected that Large Hadron Collidor at CERN, near Geneva, will determine which theory is correct by about the year 2020.6

Without fuel to maintain the huge pressure that is required to counter gravity, the star first implodes, and then the outer layers rebound against the its core and are violently ejected into space, in a process that is one of the most powerful explosions in nature. Simultaneously, the massive core continues to cave in and quickly collapses into itself to form a black hole.

¹ Supermassive black holes are thought to evolve when many smaller black holes merge like smaller bubbles into a big one at the center of a galaxy and start swallowing everything that comes their way. Such a black hole is what remains from an exploded sun much bigger than our own. The explosion is a rare celestial phenomenon called supernova, which happens when these developed suns use up all their nuclear fuel.

² Tim Appenzeller in U.S. News & World Report, March 27, 2000, *Darkness Made Visible*:

³ The heaviest known particle of the Standard Model is the top quark with a mass equivalent to an energy of 175 gigaelectron volts (GeV) One GeV is a little more than the energy contained in a proton mass.

⁴ This energy level is in and of itself not the problem. This is because when these particles are (theoretically) measured at the same energy levels they all become equal to each other.

⁵ The scale at which the first three forces combine is at 10 to the 16. The Planck Scale, which is when gravity is also combined with these three forces, is 10 to the 18.

⁶ Based on Steven Weinberg's article in *Scientific American*, pg. 39.

APPENDIX E: UNCERTAINTY & PROBABILITY

- i- New Concepts of Matter
- ii-Uncertainty
 - a Practical Uncertainty
 - **b** Uncertainty because Man a Part of the System
 - c Quantum Uncertainty

APPENDIX E: UNCERTAINTY & PROBABILITY

i- New concepts of Matter

In the twentieth century the concept of matter as a solid physical reality has been disappearing. Solid tables and chairs are now known to be essentially empty space, the electrons and atomic nuclei within them occupying only the smallest of spaces. The reason our hand does not go through the table when we hit it is not because it is a solid mass, but rather because of the forces which hold the atoms together. This is hard to understand because it is not what we see or experience. But scientists have proven that this is so.

The scientific concept of time and space also changed. Time and space, the correlates of matter, are no longer absolute concepts and cannot even be thought of as independent dimensions.

Even the little bit of matter that is left can be turned into pure energy, making the connection between the physical and the spiritual realms seem much more feasible.

In The "Tao of Physics", Fritjof Capra paints a fascinating mural of just how far all this goes. We know that particles are also waves at the same time. But "they are not 'real' three-dimensional waves. They are 'probability' waves. ... These patterns ultimately do not represent probabilities of things, but rather the probabilities of interconnections. ... Subatomic particles [in fact] have no meaning as isolated entities ... Quantum theory thus reveals a basic oneness of the universe. ... We decompose the world independently existing smallest units. ... Nature does not show us any isolated 'basic building blocks', but rather appears as a complicated web of relations between the various parts of the whole." (page 78)

"Two ... developments in modern physics have shown that the notion of elementary particles as the primary units of matter has to be abandoned. ... On the experimental side ... we today know of over two hundred 'elementary' particles. ... It became clear that not all of them could be called 'elementary' and today there is a widespread belief among physicists that none of them deserves this name. And at a theoretical level, it became clear that "a complete theory of nuclear phenomena must not only be a quantum theory, but must also incorporate relativity theory. This is because the particles confined to dimensions the size of nuclei move so fast that their speed comes close to the speed of light." (pg. 86)

Capra goes on to show that unless we regard particles as dynamic processes, subject to relativistic laws, numerous paradoxes remain unresolved. The mass perceive is only the specific manifestation of distribution of the available energy of the system (pg. 89). This leads to the notion that forces and the objects on which they operate are really different expressions of the same thing. (pg. 245) Ultimately, empty space itself (in which force fields operate) and matter become indistinguishable. Virtual particles are a consequence of this, emerging spontaneously out of empty space itself! (pg. 246)

ii-Uncertainty

In the micro world of subatomic physics (the physics that deals with the particles inside an atom) there are three types of uncertainty:

a - Practical Uncertainty

This uncertainty derives from the practical difficulty of measuring things so small.

Since even the greatest magnification in the strongest microscope isn't enough to actually see some of these particles first hand, the only way to observe some subatomic particles, is to do things like bounce radiation off it, or to crash two such particles together and to observe the tell-tale signs of the effect thereof. In this way, the observer is not just an objective bystander to what he is observing, he becomes a part of what he is observing, actually changing the subatomic world in the very act of trying to see it. This type of uncertainty is a practical uncertainty, a function of our not having found better ways of measuring.

b - Uncertainty because Man a Part of the System

However, there is a second, more intrinsic type of uncertainty. In the early part of the Werner Heisenberg proposed century. is popularly known as Uncertainty Principle, namely that we can either know the position of an electron or its momentum, but not both at the same This is because electrons and photons (the unit of light) act as both waves and particles. Logically this seems impossible since a wave is a spread out force (think of a sea wave) which has a wavelength, a peak and a trough, whereas a particle is a discrete entity, occupying a definite place in space and time. Nevertheless, there are actually many experiments to prove this (individually, the experiment proves that an electron is either a wave or a particle, but cumulatively they indicate both).

If we try to measure the momentum of an electron, we must measure its wavelength. To do this, you need to observe one wavelength over a certain distance, but then you cannot know its position, since all you have is a smear of a wave. If on the other hand you want to know the position

of that same electron, you have to allow many waves to interfere with each other at a certain point. The more precise the desired measurement, the more waves you need to interfere at that point. But each one of these waves has its own wave length, i.e. its own momentum. Therefore we can never know the momentum of a specific particle.

Therefore the reality of the subatomic, quantum world is that we must choose whether we want to know the momentum of the particle or its position, but we can never know both. Heisenberg showed that this choice is not just a practical difficulty, a type of experimental limitation, but that there was no way, even in principle, of ever overcoming this difficulty. In addition our very choice of what to measure, and seemingly without any interference in the world, seems to determine the final reality of which hole an electron will go through, or whether it will behave as a wave or a particle! This has led some physicists to call our world an observer centered universe. The observant scientist, Herman Branover, claims that such a universe is necessary not only to allow freedom of choice, but for human choices to actually change the universe.

c - Quantum Uncertainty

Emerging out of this, Neils Bohr showed that there was a third type of uncertainty known as quantum uncertainty. In order to know whether a particle has moved from point A to point B, one needs to measure the exact location of the particle at point A, the momentum of the particle and the exact location of the particle at point B. But, as we showed above, we can never measure all these things together. So, all we can really talk about is the probability of a certain particle moving from A to B. The more electrons we have, the higher the probability that some of them will reach a

certain point, but we can never say for sure. What adds to this uncertainty is that electrons sometimes behave in unpredictable ways (for example, they tunnel through objects that they shouldn't be able to get through and appear mysteriously on the other side). So what we are left with is a type of a bell curve graph which tells us the different chances that an electron has of re-appearing at a certain point.

Princeton physicist John Wheeler invented the term "quantum foam" to describe the fact that not only do particles pop in and out of existence without limit, but spacetime itself constantly changes, "churning into a lather of distorted geometry'.

It was about such things that Einstein rebelled and stated, "I don't believe that G-d plays dice." But in the end the physics community has shown that Einstein was wrong - there is uncertainty built into the universe.

There have been several attempts by leading scientitsts to make sense of quantum uncertainty. The best known and historically the most influential was the Copenhagen Interpretation. It says that there is an inherent duality in nature, called 'complementarity', according to which attributes that are classically contradictory (such as being a localized particle or a spread-out wave) can both be part of the makeup of the same physical object, but they can never be observed in the same experiment. Asking which attribute the object has objectively is deemed meaningless: the nature of the measurement determines which property is manifested. The value of the measured quantity (e.g. the specific position) is determined randomly at the moment of observation or interaction with 'classical level'. This random change is known as 'collapsing the wave function'.

Many-Worlds interpretation The introduced by Hugh Everett in 1957 and currently advocated by David Deutsch and others says that there are a large number of parallel universes with greater or lesser similarity to our own. The 'neighboring' universes are ones which differ from our own only in the position of a few particles. Neighboring universes can't be detected directly but the particles in them can have an interference effect on the corresponding particles on our own universe, which explains the strange behavior of particles in interference experiments and, one day, quantum computers. Overall, reality, (the 'multiverse') is non-random independent of observers¹.

SCIENCE: Page 141

¹ Based on an articles in December 2000/January 2001 issue of Philosophy *Now*, *The Many Worlds of David Deutsch*:

APPENDIX F: RELATIVITY

i-Space-Time

ii-Black Holes

APPENDIX F: RELATIVITY

i-Space-Time

The effect of motion on time was formulated by Einstein in 1905 in his Special Theory of Relativity and the effect of gravity on time was formulated in 1914 in his General Theory of Relativity.

The theory of relativity dramatically changed the way we perceive time and space. Firstly, time and space were joined, so that we no longer can talk about time or space, but rather the four dimensions of space-time. Secondly, both space and time were shown to not be objective, absolute concepts. Rather both can stretch or shrink.

The theory of relativity states that as objects go faster, time goes slower (it stretches or gets warped). Only the speed of light stays constant. If an object were to go faster than the speed of light, theoretically speaking it would be able to travel into the past. However, no object with any mass can ever go the speed of light. This is because, the faster an object is going. The more time is being stretched (i.e. as it goes slower), the space the object occupies is being shrunk therefore increasing its mass. Close to the speed of light it becomes so heavy that it would take almost an infinite amount of energy to speed it up any further (There are objects however, that have no mass. These can go as fast or faster than the speed of light).

This idea of time slowing down was dramatically illustrated by the twins example. One twin stays on earth and the second goes in a rocket into outer space. The second twin is going to experience a slowing down of time relative to the earth-bound twin. When we look at his watch, we see that each time his second hand moves, ours on earth has moved several times. (The space twin himself, does not however, experience this. He looks at his

watch and it appears to function normally). When the space twin finally arrives back on earth, he find that his earth-bound sibling has aged ten years while he has only aged two years. Atomic clocks today are so accurate that they can measure the slowing down or the speeding up of time. effects were observed experiments conducted in the 1960's and the 1970's. In one such experiment in 1971, atomic clocks were carried in two high speed aircraft. One traveled eastward, that is, in the rotational direction of the earth, and the other westward. After the flight, the onboard clocks were found to have either lost or gained time (relative to a ground based atomic clock), depending on their direction of travel, an effect of motion and on their altitude, an effect of The results confirmed predictions made in Einstein's Theory of Relativity.

Time also flows more slowly when gravity is greater. Thus time goes a little slower on the ground than it does at the top of a skyscraper. This has actually been measured. So too, time on earth goes slower than time in outer space. In the case of black holes, gravity is so great, that time seems to stop altogether (Again, this is only from our earthly perspective.) When we look at a watch at the edge of a black hole, we cannot see its hands moving at all (See below ii - Black Holes)

Any one person slowing down or speeding up (no matter how much) or moving from low to high gravity, will not notice any difference. It is only someone observing that person from a different frame who will see these differences.

Space can also expand or contract depending on the speed of the object. At the linear particle accelerator in Stanford, electrons are moving so close to the speed of light that the length of tube <u>in their</u>

<u>frame of reference</u> is scarcely 1 ft in length.¹

In the 19th century, the Austrian physicist and philosopher Ernst Mach declared that all motion was relative, and speculated that therefore the inertia of any given object in the universe was somehow determined by its relation to everything else in the universe.

Einstein was taken by what he called Mach's principle, and it was part of the inspiration for general relativity. That theory described space-time as a kind of sagging mattress where matter and energy, like a heavy sleeper, cause planets, falling apples and beams of light to follow curved paths instead of straight ones. Einstein's theory predicted the expansion of the universe and the existence of lightswallowing black holes.

But in a Machian twist that pleased Einstein, it seemed that rotating matter could not only make space sag but also cause it to spin. Just as stirring a thick milkshake with a spoon will cause the cup holding the drink to turn, a massive rotating object will slowly drag space-time around with it. That means that if you were orbiting, say, Earth, you would feel no force and think you were at rest, but you would find yourself spinning slowly with respect to the distant stars.

The effect, called frame dragging, is so tiny near Earth that for decades physicists despaired of being able to test it. In a year the twist would be about one hundred-thousandth of a degree — about the thickness of a human hair as seen from a quarter of a mile away.

In 1959, three Stanford scientists, agreed to team up on an ambitious effort to test Albert Einstein's theory of gravity, a predictions of Einstein's general theory of relativity. Gravity Probe A, which showed how gravity affects the rate of clock, flew in 1976. But, it took 45 years

and \$700 million to put together Gravity Probe B, launched in 2004. Nearly 100 Ph.D.'s were awarded at Stanford and elsewhere for work on the project.

The probe contains four gyroscopes to measure whether and how the spinning Earth twists space-time around itself to produce gravity².

Increasingly precise observations of satellites, the Moon, planets and other bodies over the decades have already concluded that general relativity is correct³. The latest measurement will add

In space, they will be suspended by electrical fields and spin at 10,000 revolutions per minute inside a quartz telescope trained assiduously at the star IM Pegasi.

To make sure that no outside influence imparts a stray wobble to the spinning balls, the telescope floats freely inside an external spacecraft equipped with jets to sense and counter any drag from stray wisps of atmosphere. It is also surrounded by a superconducting lead bag that shields it from magnetic fields. And the whole assembly is cooled by liquid helium to less than 2 degrees above absolute zero, or about minus 456 degrees Fahrenheit.

But that's only the beginning. After having isolated the gyroscopes from the rest of the universe and aligned them with IM Pegasi, the scientists have to monitor which way they are spinning.

To this end, the quartz balls are coated with niobium, which loses all resistance to electrical current at these temperatures. As a result, when the balls rotate, some of the electrons in the niobium slip behind their atoms. Their relative motion creates a small current that generates a tiny magnetic field, located by detectors known as squids — superconducting quantum interference devices — built into the gyroscope.

³ Although frame dragging has not been detected directly, astronomers say it has been measured indirectly. Last year a group of Italian physicists claimed to have measured it within a margin of error of about 20 percent by analyzing data from the two Lageos satellites, spherical objects pocked with reflectors that were launched to serve as sort of geodetic markers in the sky. More satellites in coming years could reduce the

¹ In *Genesis and the Big Bang*, Dr. Schroeder explains relativity at length.

² They are said to be the most perfectly spherical objects ever made by humans — out of round by only 40 layers of atoms. If the Earth were this perfect, the tallest mountain would rise just six and a half feet.

to this because it is free of astronomical uncertainties or theoretical frameworks¹. Despite this most theorists believe that ultimately general relativity will fail².

ii-Black Holes

One thing which relativity predicts is the existence of black holes. A black hole is a body whose mass is so dense and whose gravity is so great that anything which gets pulled towards it including light can never escape. It emits no electromagnetic radiation (at least not at levels astronomers could ever hope to detect) hence its name, black hole.

Black holes are divided between their event horizon, which is the point of no return and a singularity, the collapse of

margin of error to 1 percent, the precision that Gravity Probe B is aimed at.

Meanwhile, last September, astronomers claimed that they had measured the parameter gamma by timing radio signals on their way to Earth from the Cassini spacecraft, which is approaching Saturn. The signals were delayed as they passed the Sun, dipping into its gravitational warp. The scientists found that gamma was equal to the Einsteinian value of 1.0 to a precision of about one part in 40,000.

¹ The squids have two missions. One is to measure the frame dragging, which would cause the gyros to turn in the direction of the Earth's rotation. The other is to measure a parameter called gamma, or how much matter causes the geometry of space to deviate from the "flat" Euclidean geometry familiar from high school. Because the Earth makes space-time sag, a circular orbit around the Earth should turn out to have a circumference ever so slightly less than pi times the orbit's diameter.

This "missing inch," as Dr. Everitt calls it, should cause the gyros to turn in a direction perpendicular to the Earth's rotational axis. Some physicists regard gamma as a more interesting measurement than frame dragging, because many of their more exotic speculations, like hidden extra dimensions and undiscovered forces permeating space, could cause its value to deviate from the Einsteinian prediction of exactly 1.0.

matter to nearly a mathematical point in the center of the black hole. According to relativity, gravity causes light to bend or curve. In the case of a black hole, the curvature is so great, that after the light reaches the event horizon, it spirals inwards, caught forever (According to Stephen Hawking, some radiation does in fact escape from the black hole).

One of the ways in which a black hole can be created is by the collapse of a star, though most stars do not become black holes when they burn out. However, sometimes conditions are right for the star to become denser and denser. They eventually pass the point where the density would be infinite and all the basic laws of physics break down.

Until recently, there was only circumstantial evidence for black holes. The two best proofs are as follows: Firstly, near galactic centers, stars are moving so rapidly that they would fly off unless the gravity of a huge mass - up to the equivalent of a billion suns – would hold them in. Whatever has this mass must be extremely dense and theorists know of no alternative to a black hole. Second, many galactic centers and binary star systems (two stars rotating around each other) spew radiation and matter at gargantuan rates. They must contain an extraordinarily efficient mechanism for generating this energy. In theory the most efficient engine possible is a black hole.

However, it is not certain from these proofs, especially the second one, that it must be a black hole causing these effects. There are two other candidates for this as well, neutron stars and white dwarfs. If one took the mass of the sun whose circumference is 1.4 million km, it would collapse into just 10 000 km in a white dwarf. In a neutron star the circumference would be 60 km and a black hole 6 km. In fact, some of these objects were indeed found to be neutron stars (so called because a large star has collapsed to the

² Based on Dennis Overbye in the NY Times, April, 13, 2004.

point where the atoms got crushed and their nuclei stacked together.

However, Scientific American ((May 1999) reported that astronomers may now have direct proof in the form of energy

which they have observed vanishing from volumes of space without a trace.

(See **Appendix I ii** for a discussion on the loss of information when it enters a black hole.)

APPENDIX G: RELIGION AND SCIENTISTS

i-Religious Beliefs of Scientists

- a Isaac Newton
- b Herman Weyl
- c Max Born
- d Arthur Eddington
- e Max Planck
- f Robert Jastrow
- **g** Charles Townes
- h Carl Sagan
- i Steven Weinberg
- j Stephen Hawking

ii-Orthodox Scientists - Historical

- a-Rambam
- b-Vilna Gaon

iii-Orthodox Scientists - Contemporary

- a-Avraham Steinberg
- **b-Elie Schusheim**
- c-Leo Levi
- d-Abraham HaSofer
- e-Cyril Domb
- f-William Etkin
- g-Alvin Radkowsky
- h-Aaron Vecht
- i-Rabbi Moshe Tendler
- j-Herman Branover
- k-Rabbi Dr. Naftali (Norman) Berg
- l-Dr. Aryeh Gotfryd
- m-Dr. Alexander Poltorak
- n- Professor Velvel Greene
- o- Professor Yakov Brawer
- p- Professor Barry Simon
- q-Arnold Penzias
- r-Gerald Schroeder

APPENDIX G: RELIGION AND SCIENTISTS

i-Religious Beliefs of Scientists

In the body of the text, we have had several discussions about the beliefs of science and scientists. (See Chapter F. See also at the end of the critique of evolution, The Secular Bias of Evolution). The following is a listing the names of some individual scientists and their specific beliefs. It is important to note:

i-The majority of really world-famous scientists of the twentieth century. believed in G-d. However, when leading scientists are asked whether they believe in a G-d with Whom one can have a relationship and to Whom one can pray, most leading scientists (60% in one study) answer in the negative. Whether the greatest contemporary scientists are drawn away from Divine Providence or whether the higher echelons of academia select for the trait of disbelief is an open question.¹ What is clear is that unlike believing scientists. who have usually challenged to think quite deeply about why and what they believe, the reasons which scientists give for not believing are rarely clearly thought out. Ernst Mayr did a survey of his Harvard colleagues and found that there were two sources. One Mayr typified as, "Oh, I became an atheist early on. I just couldn't believe all that supernatural stuff." But others told him, "I just couldn't believe that there could be a G-d with all this evil in the world." Mayr adds that most atheists combine the two.²

ii-The nature of that belief was often very far away from the idea of a Divine

¹ See *Scientific American* September 1999, pg. 81 ² Ibid.

Providence. (Some call this idea, the G-d of the scientist. However, there is no monolithic belief about G-d.)

a - Isaac Newton

The wonderful order of nature can be the effect of nothing other than the wisdom and skill of a powerful ever living Agent. (Optics, in Baumer 53)

We must believe that He is the G-d of the Jews, who created the heavens and the earth and all things therein as expressed in the ten commandments. (Manuel Frank, *Religion of Sir Isaac Newton*, Oxford Press, 1974)

b - Herman Weyl

Professor of Math, Princeton: The ultimate answer lies beyond all knowledge, in G-d alone. (*The Open World*, Yale U Press, 1931, pg. 28)

c - Max Born

Gave final form to Quantum Theory: The scientist, thirsts for something fixed...in the universal whirl: G-d, beauty, truth. (*The Restless Universe*, Dover, pg. 277)

d - Arthur Eddington

Leading astronomer: Religion not incompatible with science. Below the physical world lies a spiritual domain which lifts the veil in places. He believed there is a new approach to reality deep within the soul of man, beyond the material, revealing the presence of G-d. (Modern Physics, pg. 373)

e - Max Planck

Discovered Quantum Theory: The Law of Least Action provides clear evidence of a Intelligence Supreme reigning omnipotently over Nature. (The New Science, Meridian, 1959) (The Law of Least Action means that when light is faced with a number of substances of different densities, and it has to travel through one of them to get to the other side, it will always find the density which will get it to the other side in the quickest possible time, even though it would seem that it could have just as well have chosen any number of other paths.)

There is evidence of an intelligent order of the universe to which both man and nature are subservient.

f - Robert Jastrow

World famous astronomer: He (the scientist) has scaled the mountains of ignorance; he is about to conquer the highest peak, as he pulls himself over the final rock, he is greeted by a band of theologians who have been sitting there for centuries. (*G-d and the Astronomers*, pg. 125 end of chapter entitled "The religion of science")

g - Charles Townes

(Co-winner of 1964 Nobel Prize in physics for discovering the principles of the laser) "Many have the feeling that somehow intelligence must have been involved in the laws of the universe."

Against this a few leading scientists were quite secular:

h - Carl Sagan

Since the birth of the world could be explained by science alone, there was "nothing for the Creator to do," and every thinking person was therefore forced to admit "the absence of G-d."

i - Steven Weinberg

The more the universe has become comprehensible through cosmology, the more it seems pointless. (Most scientists came to just the opposite conclusion.)

Or agnostic:

j - Stephen Hawking

One of the greatest living physicists: The universe appears to contain a symmetry and precision necessary to create intelligent life which is difficult to explain except as an act of G-d. (*A Brief History of Time*, pg. 127)

k-Sir Fred Hoyle

Sir Fred Hoyle is honorary member of the U.S. Academy of Science, Plumian professor of Astronomy and Experimental Philosophy at Cambridge University, professor of Astronomy at Great Britain's Royal Institute, fellow of Great Britain's Royal Society, staff member at The Mount Wilson-Palomar Observatory, visiting professor of Astrophysics at California Institute of Technology, knighted for his accomplishments in science. Hoyle is renowned for debunking fuzzy thinking in evolution, showing how unlikely random events are likely to have been in contributing to each stage of life.

ii-Orthodox Scientists -Historical

a-Rambam

Famous Doctor

Wrote classical students' textbook summarizing Galen and others, books on poisons, psychosomatic diseases and others.

Extensive knowledge of mathematics and all the sciences

b-Vilna Gaon

(הקדמה), quotes his Rebbe as saying:

"All the sciences are necessary for our holy הורה and are included in it.

To the degree that a man is lacking in knowledge and the sciences, he will lack one hundredfold in the wisdom of the "uren"

Also there:

"He knew them all, completely... algebra, trigonometry, geometry,... he explained the nature of all sciences and said that he acquired them completely, except that in the medical sciences he knew only anatomy and the related disciplines. He wanted to learn pharmacology from contemporary physicians, but his father forbade him to study so that he should not have to put aside his narm study by going to save lives."

He wrote works on mathematics and geography (צורת הארץ) and on the calculations of the seasons and the movement of the planets.

iii-Orthodox Scientists -Contemporary

a-Avraham Steinberg

Director, Center of Medical Ethics at Hebrew University Hadassah Medical School in Jerusalem where he also teaches general pediatrics and neurology. Is listed in the International Who's Who of Intellectuals ((1987), the Dictionary of International Biography (1989-90), and Who's Who in Israel (1991-92). Has written over 90 articles on neurology, general medical ethics, Jewish medical ethics, and medical history.

b-Elie Schusheim

The Knesset Doctor and medical consultant for the State Comptroller of Israel. Former Director and founder of Neve Simcha gerontological hospital 1967-71.

c-Leo Levi

A former Associate Professor of Physics at City University, today Director of Jerusalem College of Technology (1980 1990), author of many scientific books and articles in the area of applied optics.

d-Abraham HaSofer

Doctorate in mathematical statistics from University of Tasmania, Australia, heads the department of statistics at the University of New South Wales since 1969. Co-inventor of the Hasofer-Lind Reliability Index.

e-Cyril Domb

Former Professor of Theoretical Physics at King's College, having previously held Faculty appointments at Oxford and Cambridge Universities. He specialized in statistical mechanics.

f-William Etkin

Former Emeritus Professor of Albert Einstein College of Medicine. Specialized in the physiology of the endocrine system.

g-Alvin Radkowsky

Formerly the chief scientist of the US Atomic Energy Commission Naval Reactors during which he invented a method for prolonging the lifetime of nuclear reactors. Currently professor of nuclear engineering and physics at Tel Aviv and Ben Gurion Universities.

h-Aaron Vecht

Head of Materials Division, Thames Polytechnic, London, where he teaches optoelectronics and defect chemistry to postgraduate students. He has published and patented widely in the fields of semiconductors and luminescence

i-Rabbi Moshe Tendler

Chairman of Biology Department of Yeshivah University. Internationally recognized medical ethicist.

j-Herman Branover

Ph.D. from Moscow Institute of Aviation in magnetohydrodynamics. D.Sc. degree in physics and mathematics at the Leningrad Polytechnic Institute. Created the Center for Magnetohydrodynamics Studies at the Ben-Gurion University. Recipient of the S.D. Bergman Prize for the development of new technology in Israel. Foreign member of the Russian Academy of Natural Sciences in Moscow and the

Latvian Academy of Science, a member of the Moscow International Energy Club, and has received honorary doctorates from the Russian Academy of Sciences and the Technical University of St. Petersburg.

k-Rabbi Dr. Naftali (Norman) Berg

Received BS and MS degrees in electrical engineering from the Illinois Institute of Technology and Ph.D. degree electrophysics from the University of Worked at the Pentagon Maryland. research center. Concentrated on nuclear radiation effects on electronic materials devices: acousto-optic processing; and the processing fusion of data from multiple sensors for battlefield applications. Received the Wilbur S. Hinman Outstanding Technical Achievement (1977);Award Outstanding Paper Award of the Army Science Conference (1977) and the HDL Inventor of the Year Award (1979). He was also given an Army Research and Development Award (1981) and was named Engineer of the Year in 1982 by the Armv Material Development and Readiness Command.

l-Dr. Aryeh Gotfryd

Hon B.Sc. in Zoology and a Ph.D. in Ecology from the University of Toronto. Awarded Ontario Graduate and Canadian Wildlife Scholarships.

m-Dr. Alexander Poltorak

Devoted his studies at the Kuban State University in Krasnodar to Einstein's theories of relativity and gravitation, published several papers in this field and wrote his doctoral thesis on a solution to a long-standing "energy problem" in General Relativity Theory.

n-Professor Velvel Greene

Professor of Public Health and Microbiology at the U. of Minnesota. Received BA in Agriculture, MA in dairy science and Ph.D. in Bacteriology and Biochemistry at the University of Minnesota. One of the original bioscience researchers participating in the US Space Program.

o-Professor Yakov Brawer

Completed Ph.D. at Harvard University. Was an Andelot Fellow in 1966. Worked as research fellow at Harvard for the National Institute of Neurological Diseases and Stroke. Appointed assistant professor of anatomy at Tufts University. In 1971 he won the William Wilkins Award from the American Association of Anatomists. Currently professor of anatomy and professor of obstetrics of gynecology at McGill University School of Medicine. Published over 60 papers in his research area of reproductive neuroendocrinology and in related fields.

p-Professor Barry Simon

Dr. Simon received a Ph.D. in physics from Princeton in 1970 and has subsequently held several positions jointly in mathematics and physics. In 1981 he moved to Caltech where he became the IBM Professor of Mathematics and Theoretical Physics and Department Chair for Mathematics . He is a former vice president of the American Physical Society

and a winner of the gold medal of the Association of Molecular Science for work related to quantum chemistry. He is the author of 12 scientific books (graduate level texts and advanced monographs) and approximately 300 research papers in his field of mathematical physics, especially in questions related to quantum mechanics.

q-Arnold Penzias

Co-discoverer of the background radiation which represents the afterglow of the Big Bang.

r-Gerald Schroeder

Dr. Gerald Schroeder earned his B.Sc., MSc, and Ph.D. at the Massachusetts Institute of Technology. His holds a Ph.D. in two fields: Earth and Planetary Sciences, and Nuclear Physics. He spent seven years on the staff of the M.I.T. Physics Department prior to moving to Israel and joining the staff of the Weizmann Institute of Science in Israel. authored approximately He has publications in peer-reviewed scientific journals. The results of his research have been reported in Time and Newsweek, Scientific American, and newspapers from Boston to Adelaide. In his capacity as consultant to the U.S.-U.S.S.R. Nuclear Arms-Control Treaty, Dr. Shroeder witnessed the detonation of six atomic bombs. He has served as consultant to agencies in governments of USA, Peoples Republic of China, Philippines, Malaysia, Singapore, Thailand, Canada. Dr. Shroeder is the author of GENESIS AND THE BIG BANG, published by Bantam Doubleday, now in six languages; and THE SCIENCE OF GOD, published by Free Press of Simon & Schuster.

APPENDIX H: THE PHILOSOPHY OF NATURAL SCIENCE

- i-Popper
- ii-Kuhn
- iii-Feyerabend

APPENDIX H: THE PHILOSOPHY OF NATURAL SCIENCE

In **F** - **Underlying Beliefs in Science**, we described how issues of beauty, unity, etc. affect the legitimacy of the scientific idea. In **Appendix E** we described the three levels of uncertainty of science. Here we develop some other limitations and show, in **i** - **iii** that there are distinct schools of thought on different issues. Popper, Kuhn and Feyerabend represent different levels of interpretation of just how scientific science is.

i-Popper

The Englishman, Sir Karl Popper, described how a proper scientific theory ought to work. According to Popper, a scientific theory can never be proven absolutely true; we can only, by repeated experiments, say that it is less and less likely to be proven false. Of course, just like theories of the past that were proven to be false, so current scientific theories may also be proven false. But as science continues to progress, we keep on getting closer to the truth.

For Popper (and others like Karl Manheim, in *Ideology and Utopia*), science is essentially a rational enterprise; hence, it is the one endeavor which is exempt from the dictum that knowledge is socially shaped.

ii-Kuhn

Thomas Kuhn, of MIT wrote his famous *The Structure of Scientific Revolution* about 40 years ago. In it, he claimed that science moves very slowly for long periods of time until there is a sudden revolution during which the scientific

community changes paradigms. A paradigm is a way of looking at the world, a way of filtering information. operating in a certain paradigm, the scientific community only sees certain types of questions or unsolved scientific problems as legitimate areas of scientific concern and therefore they are only going certain types of answers. Eventually, someone comes and manages to break out of that paradigm, like Newton and Copernicus in their day and as did Einstein, breaking out of Newtonian ways of looking at the world. Usually this person is very young, not yet set too deeply in the existing paradigm. Very often, the older scientists never fully accept the new paradigm - they simply have to die out to allow for the new paradigm to take root. Therefore, if a theory is propounded before its time, it may not be accepted. An example of this is the wave theory of light, propounded by Young in the early 1800's in opposition to Newton's corpuscularian theories of light. (Some claim however, that the theory simply had not been proven yet.)

The new paradigm may use the same words as the old, but it often means something completely different, making the old and new theories non-comparable. Since facts are always seen through paradigms, there is no such thing as a completely objective fact.

It is important to note that Kuhn subsequently modified his position considerably -the New Kuhn, in which he questions whether science actually progresses in some objective sense when there is a paradigm changed. What we described above is the Old Kuhn which people usually mean when referring to him.

iii-Feyerabend

Everyone agrees that from time to time, subjective bias creeps into science. One of the most famous cases was the purported discovery by a group of scientists of a heavy neutrino having a mass of 17 keV (17,000 electron volts). Such a particle would have a very sweeping impact on both particle physics and cosmology. A number of follow-up experiments confirmed the finding of an exact mass of 17 keV. Later on the whole thing was shown to be false. The scientists were not fabricating their evidence; they were simply seeing what they were hoping and expecting to see.

A more obvious case is that of cold fusion, the claim by Stanley Pons and Martin Fleischmann that nuclear fusion could take place at relatively low temperatures, although here the distinction between misleading expectations and downright dishonesty became blurred, and other scientists were quick to expose the fraud.

Feyerabend on the West Coast, turned these cases of subjective bias into a more generalized observation about science. He wrote a book, called "Against Method", in which he argued that there is no such thing as scientific method. Whatever rules science is supposed to go by get violated sooner or later. Of course, scientists think that they are following certain rules, but the real progress in science happens when scientists consciously or unconsciously violate those rules, and even allow what may have been considered as irrational and counter-inductive processes to enter into their thinking. In Feyerabend's words: "Anarchism helps to achieve progress." This implies that, despite the lack of real method, science actually does make

progress. In other places, Feyerabend denies this.

Therefore, science is just one tradition among many. We ought to remove science from its pedestal and put it in its place along with other traditions like astrology. witchcraft and traditional medicine so that society can benefit equally from all of Feyerabend is not alone in his contentions. A group of academics at the University of Edinburgh "contends that scientific knowledge is only a communal belief system with a dubious grasp of reality." (Gottfried and Wilson, quoted in Scientific American, Nov. '97, pg. 80) "Andrew Pickering, a sociologist at University of Illinois, writes in his book, Constructing Quarks that "there is no obligation upon anyone framing a view of the world, to take account of what 20thcentury science has to say."(ibid.)

Post-modernists question not just the objectivity of science, but even the existence of objective reality. Many of these ideas have actually worked their way into the American educational system for teaching science i.e. constructivism (ibid.).

Interestingly, Popper, who thought science to be the most "scientific", was a philosopher, not a scientist, Kuhn is a scientist turned sociologist, whereas Feyerabend continues to be a scientist. In general, Feyerabend is regarded in academic circles as being too extreme, while Kuhn (and of course Popper) are taken quite seriously.

(Feyerabend is not consistent on this point; sometimes denying that science makes any progress at all... or rather that it makes progress only at the expense of other types of knowledge.)

APPENDIX I: MISCELLANEOUS PRINCIPLES OF SCIENCE

- i How Quantum Forces Translate into Classical Laws
- ii The Contradiction of Quantum Laws and General Relativity: Black Holes
- iii Symmetry Exceptions
- iv-Complexity/Chaos Theory
- v Genetics

APPENDIX I: MISCELLANEOUS PRINCIPLES OF SCIENCE

i - How Quantum Forces Translate into Classical Laws

Subatomic particles obey unpredictable quantum forces; larger structure obey predictable, classical laws. Yet these larger structures are made out of subatomic particles. So at some stage, quantum forces must translate into classical (Newtonian-like) laws. Scientists do not yet know when this takes place or how it does so, although there are currently many competing explanations.

ii - The Contradiction of Quantum Laws and General Relativity: Black Holes

(See **Appendix F ii - Black Holes** for general description of Black Holes)

Black holes are a creation of the law of gravity. They are singularities, i.e. places where gravity is so intense that the familiar laws of physics break down. According to the information paradox theory, once information has passed the horizon (i.e. the point of no return) it can never escape the huge pull of gravity of the black hole and is lost forever. Doing so would require it to flee faster than the speed of light. And Einstein's other great theory, special relativity, holds that to be impossible. (Although Black Holes do radiate, they do so in a standardized fashion. Since the information is thereby flattened it would be impossible to reconstruct any lost information from such radiation.)

But this contradicts another principle, the quantum law that information can never disappear. For if they could, it would mean that processes are not always reversible. Information could just leave the universe, never to be retrieved. If things are not reversible then we cannot work backwards to figure out what the laws of nature are. In addition, information is communicated through energy. If information can get lost, it means that so can energy, and that violates the principle of conservation of energy.

iii - Symmetry - Exceptions

One of basic tenets of physics is rotational symmetry, i.e. whichever way you measure the universe the result will always be the same. However, recently exceptions were found to this (*Scientific American*, July '97). Some scientists claim that measurements of light coming from distant galaxies vary depending upon the galaxies' position in the sky. (More exactly, they found that the rotation of polarized light to vary depending on the distance and location of the source.) This claim, however, is controversial and the issue remains to be resolved.

iv-Complexity/Chaos Theory

Complexity applies to things like the weather, how the brain works, economics or society. These things are difficult to reduce to simple theories for two reasons. Firstly, they involve huge amounts of information which is always changing. Secondly, they are non-linear. This means that the information in the system does not go step by step. Many things may cross over, all at the same time. Thus when the brain recognizes the same face in profile, from the front or from any angle inbetween, it is firing hundreds of neurons which work to create a recognition that all the different pictures are in fact of the

same person. A computer cannot, as of yet do this and may never be able to. One way of describing this ability is to say that the brain is adaptive; i.e. it is able to readjust its perception to differing inputs to maintain an equilibrium of recognition.

Another feature of these systems is that they are parallel rather than hierarchical. A hierarchical system has an identified control system, or initial set of causes, from which one can begin to trace a process of events. But the human brain, for example, has no identified control system. We are not able to locate consciousness in any particular part of the brain. So too, the world economy has no known control system.

Because of these elements, these systems appear to be extremely complex, defying the sort of simple formula that describe the basic forces of matter, for example. However, scientists "believe" that, in time, these systems will also yield to simple and manageable formula.

A first step in this direction has already been taken - scientists have shown that these systems are not completely random or chaotic - they do show patterns. Hence "chaos theory" was born. This has become a much publicized and rapidly advancing area of science. (Heinz Pagels)

However, even when something does show a pattern of sorts, this pattern may be so complex that that an exact solution to any given problem may always be beyond reach. Newton, for example, showed that when three or more objects - the Sun, the Moon and the Earth, for example - are interacting gravitationally, exact solutions of their motions generally remain beyond reach. Although very approximations, good enough for space travel, can be made - exact resolutions cannot. Forecasting the potential future impact of an asteroid on earth for example, cannot be made accurately, if only because the initial conditions of all the objects can never be know with precision. (N.Y. Science Times, Sep. 22, 1998)

v-Genetics

After 10 Years' Effort, Genome Mapping Team Achieves Sequence of a Human Chromosome

By NICHOLAS WADE N.Y. Times, December 2, 1999:

After a decade of preparation, scientists have for the first time decoded the information in a human chromosome, the unit in which the genetic information is packaged. The achievement, by a public consortium of university centers in Britain, the United States and Japan, is a milestone in the human genome project, an initiative started in 1990 with the goal of deciphering all of human DNA by 2005.

The success in decoding the first chromosome, even though it is the second-smallest of the 23 pairs in every human cell, validates the approach chosen by the public consortium and bolsters the chance that it can complete the full human genome as planned. In the last 18 months the consortium's strategy has been challenged by a private company, the Celera Corporation of Rockville, Md., which asserts it can sequence the genome faster by a different method. ...

Understanding the human genome is expected to yield vast medical benefits, because almost every disease has a genetic component. The central feature of each chromosome is an enormously long DNA molecule. The chromosome on which the latest work was done is called Chromosome 22, which, small as it is, contains 43 million units of DNA, of which researchers have now decoded 33.5 million. Though there is still much left to be done, the Chromosome 22 team believes that it has sequenced all regions of major interest to biomedical researchers -- that is, the regions that contain the protein-making genes.

The fruit of the team's labors is an eyeglazing march of A's, C's, G's, and T's, as the four chemical units are abbreviated. which would take up 949 pages of this newspaper if printed in ordinary type. Techniques for analyzing such vast molecules have only recently been developed. ...

Dr. Roe estimated the total cost of sequencing the chromosome at \$15 million to \$20 million. The human genome project as a whole is budgeted at \$3 billion.

So far, the Dunham team has identified 545 genes -- each of which is composed of thousands of chemical units -- and altogether there are probably 1,000 or so genes strung out along the chromosome. The total number of human genes is still unknown and estimates vary widely, from 60,000 to 120,000.

If there is a pattern in the types of genes nature has chosen to store on Chromosome 22, it has escaped the researchers. The genes appear to be a random assortment, including a large set of genes involved in the immune system and more than 20 genes that cause known human diseases when defective, such as DiGeorge and cat eye syndromes. In addition, one of the genes suspected of contributing to schizophrenia is believed to lie on Chromosome 22 but has not yet been identified.

Besides the interest in specific genes, biologists can also see for the first time the full architecture of a human chromosome. Their immediate reaction is in some cases pure awe at the daunting complexity of the structure and the distance yet to travel before its features are understood. "I don't often pick up a scientific paper and find myself getting chills, as I did when I saw this whole chromosomal landscape," said Dr. Francis Collins, director of the human genome project at the National Institutes of Health. "This is a phenomenal historical moment, to see a full chapter of the human instruction book."

Although the goal of the human genome project is to sequence every one of the three billion letters in human DNA, the sequence of Chromosome 22 is not yet complete. There are 11 gaps, all of known length and fairly short. These are mostly regions that could not be cloned in bacteria, the standard way of amplifying long segments of human DNA for further analysis.

In addition, the team has not sequenced the DNA in two important features of the chromosome. One is the centromere, a region that helps the chromosome get copied correctly to each daughter cell when the cell divides. The other is the chromosome's short arm -- a length of DNA on the other side of the centromere -- which in Chromosome 22's case contains only multiple copies of genes involved in protein manufacture. ...

APPENDIX J: יערות דבש: ON USING MATHS, MUSIC AND OTHER WORLDLY KNOWLEDGE

APPENDIX J: יערות דבש: ON USING MATHS, MUSIC AND OTHER WORLDLY KNOWLEDGE

'יערות דבש - חלק ב: דרוש ז

זהו מה שנראה לכאורה, אבל ביותר יש להבין מה ענין זה ממנה היה מתחיל ובה היה מסיים. ונראה כי שבעה נרות הם שבעה חכמות, כי ידוע כי חכמה היא מכונה בשם נר, חכמת אדם תאיר פניו, ושבעה נרות הם חכמת חיצונים, ונר מערבי היא חכמת תורתינו הקדושה, שכינה במערב, וכל החכמות משתלשלות מתורתינו ומשם מקורם ושמה ישובו, כי כולם הם נערות המשרתות את המלכה, כמייש הרמביים [אגרות הרמביים פאר הדור סמייא] שהם לרקחות וטבחות, וכולם צריכים לתורתינו, כאשר הארכתי בזה וחברתי ספר מיוחד, ועל זה אדני הספר הטבעו, כי כל החכמות הם פרפראות וצורך לתורתינו, כאשר חכמת גימטריא שהיא חכמת המדידה ונכלל בה חכמת המספר ותשבורת ואלגעברא, צריך מאוד למדידת עגלה ערופה ומדידת ערי לוים ומקלט ותחומי ערים:

חכמת המשקלות שהיא חכמת מיכאנ״קי, צריך לבית דין לדקדק להבין במאזני צדק ועול. חכמת הראיה שהוא אפטי״ק, צריך בית דין הגדול לדעת לברר זיופי כומרי עכו״ם, כי יעשו בתחבולות ההם המראות משונות מורים פרצופים נפלאים, ומי שאינו בקי יאמר כי רוח זרה בתוך המראה, וכך היה מקדם, הכומרים עכו״ם מטעים להבאים בבית עבודתם, כאילו רוח מורה להם מתוך המראה אשר לא ידעם וגם מורה באצבע, והם הכומרים היו יושבים בחדרי חדרים, ועל ידי טוב מעמד ומצב המראות כפי תנועתם, כך מראה לעם במראה העומד בחדר, ואין איש למולו עושה כן, ולכך חיוב על בית דין הגדול לדעת תחבולות הללו, לבאר ולברר טעות השוטים אשר היו, וכהנה רבות, הצריך חכמה זו לעדים שאמרו שעמדו מרחוק וראו המראה אם קשת הראיה כל כך הולכת אם ביושר אם בעקלתון:

חכמת התכונה היא חכמה ישראלית סוד עיבור לדעת מהלך תקופות ומזלות ולקדש חדשים:

חכמת התולדה שהיא חכמת אצטגנינים, ונשתמשו בה בימי חכמי הכלדים, היא שער גדול להלכות עכו״ם, כי כך היה כל מעשה עכו״ם להקטיר למלאכת שמים, וכל מעשיהם היה בחכמת אצטגנינים ותולדות, ויפתו אחרי הוברי שמים, ומזה נולדה כל חכמת הקסם וכישוף, בעשותם טלמסאות וצורות לכוכבי שמים, והכל על פי חשבון מהלך ושיעור התולדות, ורבים טעמי מצוות שנתייסדו על זה, כמ״ש הרמב״ם, כאשר הארכתי רזה ספרי הו״ל׳

חכמת הטבע, אשר נכלל בה חכמת רפואה בכלליה, צריכה מאוד לחכמת התורה, הן לדעת ולהבחין דמים דמי נדה אם טהור או טמא, והיא חכמה לא שערו כל חכמי רופאי זמנינו, ואחזייל [נדה כ:] טבע דארץ לא ידענו ודמא קחזינא, הרי צריך לכך חכמת הטבע ומחקר לרפואה, וביחוד לדעת בשפיר אם תוך מי יום או לאחר כך, ולהבחין בין זכר לנקבה צריך חכמה הרבה וחקירה נפלאה, וכלו כל חכמות בחקירתם ולא יגיעו לכך, ומכייש שצריכים להבחין כאשר יכה איש את רעהו אם יש בו כדי להמית, ואם מת אם בשבילו הוא, ועל איזה חולה מחללים שבת:

חכמת צמחים ומחצבים, כמה גדול כח החכמים בזה, בענין כלאים לדעת שיעור יניקה עד כמה, ומה הוא טעם התערובות, ואיזה מין מותר בהרכבה ואיזה אסור, ובזה נכלל טבע בעלי חיים לדעת איזה מין יש בו הרכבה או לא, ואיזה מין חיה או בהמה:

וחכמת אומנות שקורין קאך, שחכם בה אפלטון בתקוני אכילות ומזגים, וממנה נולדה חכמת הרקחים ואפטיקין בלשון אשכנז, היא הצריכין להבין טעמי קרבנות מנחות ונסכים ופיטום הקטרת:

וחכמת אלקימייא, ובכללן פידמיע בכל חלקי התכת מתכות ושינוי טבעי מחצבים וכדומה, הוא צורך להבין טעמי בנין משכן ומקדש, איזה לכסף ואיזה לזהב ואיזה לנחושת וברזל, וטעם אבני חפץ באפוד וסגולתן, וכהנה סתרי הטבע מסתעפות בשורשה חכמת סימפאטי ואנטיפאטי שצריכין לבית דין של ישראל לדעת מה הוא מגדר סגולה וטבע הענין ואין בו מדרכי האמורי, ומה שאין בו כלל שורש בחכמה הנ״ל והוא מדרכי האמורי:

SCIENCE: Page 161

ובחכמת הציור ונתוח יכירו על בוריה חכמת היד וחכמת פרצוף, ומי שאינו בקי בזה בטוב לא יבין חכמה הנ״ל על בוריה, ובזה נשיג ענין שיר השירים בתוארי שבח הגוף ראשך ככרמל ופרשת אתה תחזה כמ״ש הזוהר [יתרו:]

מחכמת ההגיון ומבטא נבין כל חכמת הדקדוק ונועם מליצה, ומופתים אמתים ומזויפים, ודברי צחות בתורה ובנביאים:

מחכמת המוזיקא אין לדבר, כי היא חכמת השיר, ובזה נבין כל ענייני הטעמים ונקוד השיר השירים בתורה ונועם מליצת לוים וכדומה בכל פרטי דברים, והם נגונים ישרים לשמח לבבות להסיר מרה שחורה, ולקנות הנפש שמחה שיחול בה רוח אלוק כמעשה הנביאים. ומה רב כחה של חכמה זו, אשר כל מלאכי מעלה וגלגלי שמים כולם ינגנו וישירו בשיר ונגון נועם כפי סדר טוב הקולות וחצי קולות, וכולם יש להם שורש בחכמת אמת, וכל תנועה יש לה שורשים, וכבר הארכתי גם כן בספרי הנ״ל, כיצד היתה כוונתם בתנועות עולמות עליונים בנגנם ובשירם ובתנועותם, כפי הנועם והניגון בחכמה הנ״ל בפה ובכלי להשמיע קול אחד:

APPENDIX K: NOTABLE QUOTES AND READINGS

- i-Notable Quotes
- ii-Readings
 - a Primary
 - **b** Secondary

APPENDIX K: NOTABLE QUOTES AND READINGS

i-Notable quotes

"The most incomprehensible thing about the world, is that it is comprehensible" Einstein

The Scientist is as interested in the leg of the flea as the creative throes of a genius... Science tells us how to heal and how to kill; it reduces the death rate in retail, and then kills us wholesale in war (Will Durant, *The Story of Philosophy*).

I want to know how G-d created the world. I am not interested in this or that phenomenon, in the spectrum of this or that element. I want to know His thoughts; the rest are details.

(A. Einstein in A. Zee p. 8)

Einstein: Science without religion is lame; religion without science is blind.

ii-Readings

There are a huge number of good science books that have been written for the layman. We have given only a sampling of books here leaving out well known science writers such as Carl Sagan and Heinz Pagels (The Cosmic Code, Perfect Symmetry and Others) and omitting many well read books like Stephen Weinberg's The First Three Minutes and James Gleick's Chaos. In addition, science is constantly changing and progressing and it is only really possible to keep up to date by reading regular science articles. The N.Y. Times Tuesday science supplement and the monthly Scientific American are the most readable. Scientific American is also available on the Web, although in a very truncated form.

a – Primary

Pollack, Lewis - *Fingerprints of the Universe* (Artscroll) Relevant chapters on the Big Bang, Evolution etc., very readable although a bit long winded

Munk, Elie - *In the Beginning* (Feldheim) - Jewish approach to evolution

Davies, Paul - *Superforce* (Simon and Shuster 1984) - for an introductory but still in depth catch up of all aspects of the new physics.

Brody, David Elliot and Brody, Arnold R. - *The Science Class You Wish You Had* (Perigee 1997)- The easiest reading of the science books mentioned here. Includes all the basic laws of physics as well as of biology and places them in historic context.

Jastrow, Robert - *G-d and the Astronomers*

Genesis and the Big Bang, Gerald I. Schroeder, Ph.D. Bantam, Formerly an MIT professor, Dr. Schroeder; compares contemporary theoretical physics and classical Jewish sources to reveal an almost identical description of the creation and age of the universe. Available at your bookseller or inquire to <2001@aish.edu>. Also available on cassette from <2001@aish.edu> for \$7.00 plus \$2.00 for shipping and handling.

Dr. Shroeder's more recent book is *THE* SCIENCE OF GOD, published by Free Press of Simon & Schuster.

b – Secondary

Zee, A. - Fearful Symmetry: The Search for Beauty in Modern Physics (Collier Books, MacMillan Publishers) - (a more powerful book than this is Capra, Fritjof - The Tao of Physics (Random House) but is problematic because of its contrast of physics to Eastern Religions). Zee's book gets more advanced after the first few chapters.

Broad, William and Wade, Nicholas - Betrayers of the Truth: Fraud and Deceit in the Halls of Science (Simon & Schuster)

Johnson, George - Fire in the Mind: Science Faith & the Search for Order (Knopf) - Examines why people search for order; suggests that both scientists and religious people ask the same basic questions; compares point by point the stories that science and religion tell of how the world began, what it is made of, where life came from, and what the future holds.

Anthropic Principle

The following are readings suggested by the Web Sight, *The 2001 Principle* (This sight and/or the related book is the best reading on this issue.)

The video, "The Anthropic Principle," available in Pal (or for an extra charge, in NTSC) from BBC Video For

Education and Training, Horizon Library, Room 8, 2058 at BBC Enterprises Ltd., Woodlands, 80 Wood Lane,

London Q12 OTT; Phone: 44-081-576-2867; Fax: 44-081-576-2415.

Origins - A Skeptic's Guide to the Creation of the Life on Earth by Robert Shapiro, Professor of Chemistry at New York University and an expert on DNA research and the genetic effect of environmental chemicals. Bantam Books, 1987.

Not By Chance! The Fall of Neo-Darwinian Theory by Lee M. Spetner, Ph.D. in Physics, MIT. Self-published in 1996, the book is available from author. E-mail to <lspetner@inter.net.il>.

Evolution - A Theory in Crisis, by Michael Denton, Burnett Books, London, 1985. An excellent scientific

examination of the status of evolutionary theory.

If You Were God - Three Works by Aryeh Kaplan. This book begins where The Obvious Proof leaves off. It goes beyond the wall that Alan Sandage mentions in the PBS special "The Creation of the Universe" (see Menu, end #7). Available in Jewish bookstores, or through NCSY, 45 West 36th Street, N.Y. 10018.

Permission to Believe, by Laurence Kelemen, Feldheim Publishers. The author presents rational proofs for God's existence using four separate intellectual approaches, dispelling the misconception that belief in God is irrational.

"Wonders of Creation," an audio tape by Shmuel Silinsky. \$7.00 plus \$2.00 shipping and handling to <2001@aish.edu>

The Big Bang

Scientific American, Oct. '94, Peebles and Schramm - The Evolution of the Universe. Sep. '94, Gone With a Bang; Nov. '99, pg. 36 Krauss and Starkman – The Fate of Life in the Universe.

For a full account see Steven Weinberg, The First Three Minutes, or James S. Trefil, the Moment of Creation.

For sources comparing the Big Bang Theory with Creation see:

i-Schroeder - Genesis and the Big Bang - pg. 8 - 89 (especially 63, 67, 88)

ii-Aviezer - In the Beginning - pg. 10 -12

The two primary points are that

i-Light of first day was comprised of the high-intensity electromagnetic radiation constituting the entire substance of the creation at the Big Bang (Aviezer pp. 10-11; Schroeder pp. 8-89)

ii-Separation of Light from Darkness was the point of expansion where original primordial material became diluted so that photons were no longer trapped by the plasma (Aviezer pg. 12; Schroeder p. 89)

There are in addition many other "Science and "תורה" works such as:

Carmell, Aryeh and Domb, Cyril - *Challenge* (Feldheim) - written in the 60's, very outdated, but lots of useful information for someone who is up to date on his physics from other sources. Not to be used as a primary text book.

The B'Or Ha'Torah Publications;

Proceedings of the Associations of Orthodox Jewish Scientists;

Encounter: Essays on תורה and Modern Life;

Fusion: Absolute Standards in a World of Relativity

Leo Levy's תורה & Science: Their Interplay in the World Scheme

Elie Munk's commentary on חומש (an expanded version of his book, In the Beginning);

For those with a bit more of a physics bent, Zvi Feier's notes on his translation of the Malbim.

Other Science Books:

Horgan, John - *The End of Science* - The book claims that science is fast reaching its outer limits. Very readable coverage of many areas including religion and science and interviews with many leading scientists. It is also more up to date than

most of the other books quoted here. (Broadway Books, N.Y. 1997).

Davies, Paul - *G-d and the New Physics* - On religion and science. No book on religion and science has really impressed me but this comes closest. (Penguin 1983). Hawking, Stephen - *A Brief History of Time* (Bantam 1988) First half of book comprises a good introduction to relativity and quantum physics. Chapters on black holes tougher going.

Hotstadter, Douglas - Godel, Escher and Bach: An Eternal Golden Braid (Basic Books, N.Y. 1970) is a classic prototype of the unity of the world approach.

Kuhn, Thomas - *The Structure of Scientific Revolution* (U. of Chicago Press) A serious academic work, fascinating nevertheless which deals with paradigms in science.

Evolution

The most powerful book in favor of evolution is Richard Dawkin's The Blind Watchmaker (Norton and Co., N.Y., 1986); plus the many books churned out by Steven Jay Gould (e.g. The Panda's Thumb; W.W. Norton 1980). William Pennett's Darwin's Dangerous Idea completes the trilogy. The best critiques of evolution are specialized, coming mainly from microbiology. Michael Behe's Darwin's Black Box show how irreducibly organisms are complex: Michael Denton's Nature's Destiny (Free Press 1998) shows how the laws of biology reveal purpose in the universe. He is also author of Evolution, A Theory in Crisis (1984). Although Philip Johnson's books are more up to date. represent broad critiques of Evolutionary

Lee Spetner's *Not by Chance!* shattering the modern theory of evolution (Brooklyn, Judaica Press, 1997) primarily shows that random mutations rather than increasing the information of a biological system, usually decrease it.

INDEX: SCIENCE AND EVOLUTION

A co Of The Huiseans Theories On	Evalutions Chamton E vii
Age Of The Universe , Theories On	Evolution: Chapter E vii
AnimalsAnthropic Principle	Evolution: Chapter B xi d
Anthropic Principle	Science: Chapter C i k
Argument From Design	Evolution: Chapter B, Evolution:
, , , , , , , , , , , , , , , , , , ,	Appendix M ii
Argument From Design, Is Unproven	a
BeautyBeginning Of Animal Life	Science: Chapter F ii
Beginning Of Animal Life	Evolution: Chapter C iii b
Beginning Of Creation	Evolution: Chapter C iii a, Evolution:
D OCT.C	Chapter E vi
Beginnings Of Life	Evolution: Chapter B vii
Beginnings Of Life , Theories On	Evolution: Chapter E vii
Big Bang	Science: Chapter C i a, Science:
0.1	Appendix A
Carbon	Evolution: Appendix E
Carbon Dating	Evolution: Chapter E i a, Evolution:
G 1 - B' - '1	Appendix N: i
Carbon Dioxide	Evolution: Appendix F
Catholicism	Evolution: Appendix P i
Cells	Evolution: Appendix J
Chaos	Science: Chapter E vii, Science:
	Appendix I i, Evolution: Chapter B v a
Christian Fundamentalism	
	Science: Chapter D iv a
Compatibility Of Order And First Beginnings	Evolution: Chapter C ii
Complexity and Interrelatedness	Evolution: Chapter B iv
Complexity see Chaos	
Conflicting Theories	
Creation and Evolution	
Cumulative Selection	
Dating Techniques	Evolution: Appendix N ii
Design see Anthropic Principle	
DNA	Evolution: Chapter D iv, Evolution:
D. I	Appendix G
Drush	
Earth	
Electromagnetic Force, The	Science: Appendix B ii
Emergences	Evolution: Chapter B v d
Energy Level Of Certain Atoms	
Ethics	
Everything Created On First Day	
Evolution	Evolution: Chapter B v h
Evolution and Creation	Evolution: Chapter C
Evolution, Description	Evolution: Chapter A: i
Evolutionary Development Of Man	Evolution: Chapter C vi
Evolutionary Development On Other Days	Evolution: Chapter C v
Evolutionary Tree	Evolution: Chapter B ii
Evolutionists	Evolution: Chapter D iii b
Expansion Of The Universe	Evolution: Appendix K i
Eye	Evolution: Chapter B xi f
Fifth Force see Antigravity	
Four Forces	Science: Appendix B, Science:
	Appendix D
Fraud	
Galaxies	Evolution: Appendix K

Gravity	Science: Appendix B i Evolution:
	Appendix K iv
Genetics	Science: Appendix I v
Hashgacha	Science: Chapter A i, Evolution:
	Chapter C v a
Holism	Evolution: Chapter B v e
Indeterminacy see Probability	
Inflationary Theory	Science: Appendix A iv
Insects	Evolution: Chapter B xi c
Iron	Evolution: Appendix I
Judaism Does Not Object To A Concept Of Evolution	Evolution: Chapter C i b
Later Developments	
Light Limitations of Science	Science: Chapter D
Lipids	Evolution: Appendix J ii
Man	E14: Ol4 D :
Man's Uniqueness	
Microbes	
Missing Fossil Record	Evolution: Chapter D i
Molecular Challenge	Evolution: Chapter B iv
Molecular Similarities and Differences, Failure To Explain	Evolution: Chapter D vii
Observation	Caianaa: Chantar E i
Observation In Laboratory Or Outside, Failure Of	Evolution: Chapter D ii
One force from four	Science: Appendix B v
One force from four Openness, Interconnectedness and Disequilibrium	Evolution: Chapter B v g
Organization	Evolution: Chapter B v b
Osmosis	
Ovigen	
Oxygen	
Paradigms Peer Review	Caianaa, Chantan E
Physics, The Laws Of	Evolution: Appendix K
Positions Of Educational, Religious and Other Bodies	
Duadiations	Evalution, Chapter D.::
Principle Of Plenitude	
Principle Of Complexity	Evolution: Chapter B v
Principles Of Complexity	Science: Chapter C i c, Evolution:
Probability	Chapter B iii
Drotains	Evolution: Appendix H
ProteinsPshat	Evolution: Appendix II Evolution: Chapter E ii
Quantum Physics	Appendix C, Science: Appendix I i, ii
Patio Of Matter To Energy	
Ratio Of Matter To Energy	Science: Chapter C i i, Science:
Relativity, Theory of	Appendix F
Policions Other	
Religions, Other	Science: Appendix G i
Religious Scientists	Science: Appendix G I Science: Chapter E v
Replication	Science: Chapter E
Scientific Method	Science: Chapter E Evolution: Chapter B xii
Secular Bias Similar Features In Different Animals, Failure To Explain	
Simplicity	Science: Chapter F iii
Skeptic	Evolution: Appendix A
Social Darwinism	Facilities Charter Cities
Soul	
Strong Force, The	Science: Appendix B iii, Evolution:
Commence Description 1	Appendix K v
Supernova, Perfectly Spaced	Evolution: Appendix K ii
Symmetry/Supersymmetry	Science: Chapter C i h, Science: Chapter
	D viii e, I iii

Tautologies, Failure To Make	Evolution: Chapter D iii
Teleology	Evolution: Chapter B v i
Teleonomy	
Temperature Regulation In Man and Other Large Beings:	
Theories, forming	Science: Chapter E iii
Time	
	Appendix N
Tree Of Life Seems To Have Direction.	Evolution: Chapter B vi
Triage	Science: Chapter D iv b, Science:
	Appendix E
Uncertainty see Probability	
Unicellular Organisms (Protozoa)	
Uniformity Of The Universe	Evolution: Appendix K vii
Uniqueness	Evolution: Chapter B v c
Unity	Science: Chapter F i, iv
Unpredictability	Evolution: Chapter B v f
Utility Of Intervening Stages, Failure To Account For	Evolution: Chapter D v
Viruses	Evolution: Chapter B xi e
Water	Evolution: Appendix B
Weak Force, The	Science: Appendix B iv
Weathering	Evolution: Appendix B xiii a
World Did Evolve	Evolution: Chapter B viii c
World Seems To Have Been Pre-Programmed For Life	Evolution: Chapter B x
בריאה Used Only Three Times	Evolution: Chapter C iii